Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 234.b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
234.b1 | 234a2 | \([1, -1, 0, -1914, 35846]\) | \(-1064019559329/125497034\) | \(-91487337786\) | \([]\) | \(196\) | \(0.83910\) | |
234.b2 | 234a1 | \([1, -1, 0, -24, -64]\) | \(-2146689/1664\) | \(-1213056\) | \([]\) | \(28\) | \(-0.13385\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 234.b have rank \(0\).
Complex multiplication
The elliptic curves in class 234.b do not have complex multiplication.Modular form 234.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.