Properties

Label 234.a
Number of curves $2$
Conductor $234$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 234.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
234.a1 234c2 \([1, -1, 0, -63, 209]\) \(1033364331/676\) \(18252\) \([2]\) \(32\) \(-0.24266\)  
234.a2 234c1 \([1, -1, 0, -3, 5]\) \(-132651/208\) \(-5616\) \([2]\) \(16\) \(-0.58923\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 234.a have rank \(1\).

Complex multiplication

The elliptic curves in class 234.a do not have complex multiplication.

Modular form 234.2.a.a

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 2 q^{5} - 2 q^{7} - q^{8} + 2 q^{10} - 4 q^{11} - q^{13} + 2 q^{14} + q^{16} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.