Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 234.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
234.a1 | 234c2 | \([1, -1, 0, -63, 209]\) | \(1033364331/676\) | \(18252\) | \([2]\) | \(32\) | \(-0.24266\) | |
234.a2 | 234c1 | \([1, -1, 0, -3, 5]\) | \(-132651/208\) | \(-5616\) | \([2]\) | \(16\) | \(-0.58923\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 234.a have rank \(1\).
Complex multiplication
The elliptic curves in class 234.a do not have complex multiplication.Modular form 234.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.