Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-x^2-941x-704158\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-x^2z-941xz^2-704158z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-15059x-45081170\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(150455134/974169, 1539419885296/961504803)$ | $15.555025285884261043044777617$ | $\infty$ |
| $(371/4, -371/8)$ | $0$ | $2$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 23273 \) | = | $17 \cdot 37^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-214292035406089$ | = | $-1 \cdot 17^{4} \cdot 37^{6} $ |
|
| j-invariant: | $j$ | = | \( -\frac{35937}{83521} \) | = | $-1 \cdot 3^{3} \cdot 11^{3} \cdot 17^{-4}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.4288228353807687412266148313$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.37663612094134348095743300422$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.1807067659885138$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.023185674271846$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $15.555025285884261043044777617$ |
|
| Real period: | $\Omega$ | ≈ | $0.25433834476442588843481243823$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $7.9124787679611871062795400824 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.912478768 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.254338 \cdot 15.555025 \cdot 8}{2^2} \\ & \approx 7.912478768\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 51840 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $17$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
| $37$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | $\ell$-adic index |
|---|---|---|---|
| $2$ | 2B | 16.48.0.76 | $48$ |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 40256 = 2^{6} \cdot 17 \cdot 37 \), index $1536$, genus $53$, and generators
$\left(\begin{array}{rr} 9 & 124 \\ 15988 & 27945 \end{array}\right),\left(\begin{array}{rr} 33153 & 15244 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 64 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 40193 & 64 \\ 40192 & 65 \end{array}\right),\left(\begin{array}{rr} 25198 & 16095 \\ 6179 & 34226 \end{array}\right),\left(\begin{array}{rr} 13247 & 16798 \\ 16206 & 17687 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 64 & 1 \end{array}\right),\left(\begin{array}{rr} 34815 & 0 \\ 0 & 40255 \end{array}\right),\left(\begin{array}{rr} 57 & 16 \\ 33904 & 38473 \end{array}\right)$.
The torsion field $K:=\Q(E[40256])$ is a degree-$584671146541056$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/40256\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | good | $2$ | \( 1369 = 37^{2} \) |
| $17$ | nonsplit multiplicative | $18$ | \( 1369 = 37^{2} \) |
| $37$ | additive | $686$ | \( 17 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 23273b
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 17a1, its twist by $37$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-1}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{37}) \) | \(\Z/4\Z\) | 2.2.37.1-289.1-a1 |
| $2$ | \(\Q(\sqrt{-37}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(i, \sqrt{37})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.122825015296.1 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.4.2504508814096.1 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.10258468102537216.18 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ord | ss | ord | ord | ss | ord | nonsplit | ord | ord | ord | ord | add | ord | ord | ss |
| $\lambda$-invariant(s) | 2 | 3,1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | - | 1 | 1 | 1,1 |
| $\mu$-invariant(s) | 2 | 0,0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.