# Properties

 Label 23232t Number of curves 2 Conductor 23232 CM no Rank 2 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("23232.n1")

sage: E.isogeny_class()

## Elliptic curves in class 23232t

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
23232.n2 23232t1 [0, -1, 0, 1291, 9429]  23040 $$\Gamma_0(N)$$-optimal
23232.n1 23232t2 [0, -1, 0, -5969, 86385]  46080

## Rank

sage: E.rank()

The elliptic curves in class 23232t have rank $$2$$.

## Modular form 23232.2.a.n

sage: E.q_eigenform(10)

$$q - q^{3} - 2q^{5} + 2q^{7} + q^{9} - 2q^{13} + 2q^{15} - 4q^{17} - 6q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels. 