Properties

Label 23184.bh
Number of curves $2$
Conductor $23184$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("bh1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 23184.bh

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
23184.bh1 23184p2 \([0, 0, 0, -4395, 112138]\) \(12576878500/1127\) \(841300992\) \([2]\) \(15360\) \(0.75255\)  
23184.bh2 23184p1 \([0, 0, 0, -255, 2014]\) \(-9826000/3703\) \(-691068672\) \([2]\) \(7680\) \(0.40598\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 23184.bh have rank \(0\).

Complex multiplication

The elliptic curves in class 23184.bh do not have complex multiplication.

Modular form 23184.2.a.bh

sage: E.q_eigenform(10)
 
\(q + q^{7} + 4q^{11} + 6q^{13} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.