Properties

Label 2310m
Number of curves 4
Conductor 2310
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("2310.m1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 2310m

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
2310.m3 2310m1 [1, 1, 1, -501, -3957] [2] 1536 \(\Gamma_0(N)\)-optimal
2310.m2 2310m2 [1, 1, 1, -2121, 32979] [2, 2] 3072  
2310.m1 2310m3 [1, 1, 1, -32991, 2292663] [2] 6144  
2310.m4 2310m4 [1, 1, 1, 2829, 169599] [2] 6144  

Rank

sage: E.rank()
 

The elliptic curves in class 2310m have rank \(0\).

Modular form 2310.2.a.m

sage: E.q_eigenform(10)
 
\( q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} - q^{7} + q^{8} + q^{9} - q^{10} - q^{11} - q^{12} + 2q^{13} - q^{14} + q^{15} + q^{16} + 2q^{17} + q^{18} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.