Properties

Label 2310.o4
Conductor $2310$
Discriminant $6.718\times 10^{17}$
j-invariant \( \frac{19170300594578891358373921}{671785075055001600} \)
CM no
Rank $0$
Torsion structure \(\Z/{2}\Z \oplus \Z/{4}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

\(y^2+xy+y=x^3+x^2-5575730x+5065104575\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z+xyz+yz^2=x^3+x^2z-5575730xz^2+5065104575z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3-7226146107x+236425911251094\) Copy content Toggle raw display (homogenize, minimize)

sage: E = EllipticCurve([1, 1, 1, -5575730, 5065104575])
 
gp: E = ellinit([1, 1, 1, -5575730, 5065104575])
 
magma: E := EllipticCurve([1, 1, 1, -5575730, 5065104575]);
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 

Mordell-Weil group structure

\(\Z/{2}\Z \oplus \Z/{4}\Z\)

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(-2727, 1363\right) \), \( \left(1593, 14323\right) \) Copy content Toggle raw display

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\( \left(-2727, 1363\right) \), \( \left(1145, 12979\right) \), \( \left(1145, -14125\right) \), \( \left(1369, -685\right) \), \( \left(1593, 14323\right) \), \( \left(1593, -15917\right) \) Copy content Toggle raw display

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 2310 \)  =  $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11$
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: $671785075055001600 $  =  $2^{20} \cdot 3^{6} \cdot 5^{2} \cdot 7^{4} \cdot 11^{4} $
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{19170300594578891358373921}{671785075055001600} \)  =  $2^{-20} \cdot 3^{-6} \cdot 5^{-2} \cdot 7^{-4} \cdot 11^{-4} \cdot 267635041^{3}$
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $2.5108584014722441549876318328\dots$
Stable Faltings height: $2.5108584014722441549876318328\dots$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: $0$
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: $1$
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Real period: $0.26843000563938978863981367056\dots$
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: $ 640 $  = $ ( 2^{2} \cdot 5 )\cdot2\cdot2\cdot2^{2}\cdot2 $
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: $8$
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: $1$ (exact)
sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Special value: $ L(E,1) $ ≈ $ 2.6843000563938978863981367056 $

Modular invariants

Modular form   2310.2.a.o

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} + q^{7} + q^{8} + q^{9} + q^{10} - q^{11} - q^{12} - 2 q^{13} + q^{14} - q^{15} + q^{16} + 2 q^{17} + q^{18} - 4 q^{19} + O(q^{20}) \) Copy content Toggle raw display

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 92160
$ \Gamma_0(N) $-optimal: no
Manin constant: 1

Local data

This elliptic curve is semistable. There are 5 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $20$ $I_{20}$ Split multiplicative -1 1 20 20
$3$ $2$ $I_{6}$ Non-split multiplicative 1 1 6 6
$5$ $2$ $I_{2}$ Split multiplicative -1 1 2 2
$7$ $4$ $I_{4}$ Split multiplicative -1 1 4 4
$11$ $2$ $I_{4}$ Non-split multiplicative 1 1 4 4

Galois representations

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2Cs 8.48.0.25

The image of the adelic Galois representation has level $840$, index $192$, and genus $1$.

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]
 

All $p$-adic regulators are identically $1$ since the rank is $0$.

Iwasawa invariants

$p$ 2 3 5 7 11
Reduction type split nonsplit split split nonsplit
$\lambda$-invariant(s) 3 0 3 1 0
$\mu$-invariant(s) 0 0 0 0 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 7$ of good reduction are zero.

Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2 and 4.
Its isogeny class 2310.o consists of 6 curves linked by isogenies of degrees dividing 8.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{4}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$4$ \(\Q(i, \sqrt{15})\) \(\Z/4\Z \oplus \Z/4\Z\) Not in database
$4$ \(\Q(\sqrt{2}, \sqrt{-7})\) \(\Z/2\Z \oplus \Z/8\Z\) Not in database
$4$ \(\Q(\sqrt{14}, \sqrt{30})\) \(\Z/2\Z \oplus \Z/8\Z\) Not in database
$8$ 8.0.42693156000000.39 \(\Z/4\Z \oplus \Z/8\Z\) Not in database
$8$ 8.2.768797006670000.2 \(\Z/2\Z \oplus \Z/12\Z\) Not in database
$16$ Deg 16 \(\Z/4\Z \oplus \Z/8\Z\) Not in database
$16$ 16.0.63456228123711897600000000.12 \(\Z/4\Z \oplus \Z/8\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \oplus \Z/16\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \oplus \Z/16\Z\) Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.