Properties

Label 2310.k4
Conductor $2310$
Discriminant $-43812679680$
j-invariant \( -\frac{95575628340361}{43812679680} \)
CM no
Rank $1$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([1, 0, 1, -953, 15068])
 
gp: E = ellinit([1, 0, 1, -953, 15068])
 
magma: E := EllipticCurve([1, 0, 1, -953, 15068]);
 

Minimal equation

Minimal equation

Simplified equation

\(y^2+xy+y=x^3-953x+15068\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z+xyz+yz^2=x^3-953xz^2+15068z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3-1234467x+706727646\) Copy content Toggle raw display (homogenize, minimize)

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z\)

Infinite order Mordell-Weil generator and height

sage: E.gens()
 
magma: Generators(E);
 

$P$ =  \(\left(12, 67\right)\) Copy content Toggle raw display
$\hat{h}(P)$ ≈  $0.66688571014288177960734074671$

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(-37, 18\right) \) Copy content Toggle raw display

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\( \left(-37, 18\right) \), \( \left(-12, 163\right) \), \( \left(-12, -152\right) \), \( \left(12, 67\right) \), \( \left(12, -80\right) \), \( \left(27, 82\right) \), \( \left(27, -110\right) \) Copy content Toggle raw display

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 2310 \)  =  $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11$
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: $-43812679680 $  =  $-1 \cdot 2^{12} \cdot 3^{4} \cdot 5 \cdot 7^{4} \cdot 11 $
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( -\frac{95575628340361}{43812679680} \)  =  $-1 \cdot 2^{-12} \cdot 3^{-4} \cdot 5^{-1} \cdot 7^{-4} \cdot 11^{-1} \cdot 13^{3} \cdot 3517^{3}$
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $0.74837861415671153825458870119\dots$
Stable Faltings height: $0.74837861415671153825458870119\dots$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: $1$
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: $0.66688571014288177960734074671\dots$
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: $1.0649601756286216640310934788\dots$
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: $ 16 $  = $ 2\cdot2^{2}\cdot1\cdot2\cdot1 $
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: $2$
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: $1$ (exact)
sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Special value: $ L'(E,1) $ ≈ $ 2.8408268919919258393740834065 $

Modular invariants

Modular form   2310.2.a.k

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} - q^{7} - q^{8} + q^{9} - q^{10} - q^{11} + q^{12} + 2 q^{13} + q^{14} + q^{15} + q^{16} - 2 q^{17} - q^{18} - 8 q^{19} + O(q^{20}) \) Copy content Toggle raw display

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 3072
$ \Gamma_0(N) $-optimal: yes
Manin constant: 1

Local data

This elliptic curve is semistable. There are 5 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $2$ $I_{12}$ Non-split multiplicative 1 1 12 12
$3$ $4$ $I_{4}$ Split multiplicative -1 1 4 4
$5$ $1$ $I_{1}$ Split multiplicative -1 1 1 1
$7$ $2$ $I_{4}$ Non-split multiplicative 1 1 4 4
$11$ $1$ $I_{1}$ Non-split multiplicative 1 1 1 1

Galois representations

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 4.6.0.1

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]
 

Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit split split nonsplit nonsplit ord ord ord ord ord ss ord ord ord ord
$\lambda$-invariant(s) 3 2 2 1 1 1 1 1 1 1 1,1 1 1 1 1
$\mu$-invariant(s) 0 0 0 0 0 0 0 0 0 0 0,0 0 0 0 0

Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2 and 4.
Its isogeny class 2310.k consists of 4 curves linked by isogenies of degrees dividing 4.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ \(\Q(\sqrt{-55}) \) \(\Z/2\Z \oplus \Z/2\Z\) Not in database
$2$ \(\Q(\sqrt{5}) \) \(\Z/4\Z\) Not in database
$2$ \(\Q(\sqrt{-11}) \) \(\Z/4\Z\) Not in database
$4$ \(\Q(\sqrt{5}, \sqrt{-11})\) \(\Z/2\Z \oplus \Z/4\Z\) Not in database
$8$ 8.0.7086244000000.5 \(\Z/2\Z \oplus \Z/4\Z\) Not in database
$8$ 8.4.18593344000000.48 \(\Z/8\Z\) Not in database
$8$ 8.0.435560239206400.47 \(\Z/8\Z\) Not in database
$8$ 8.2.3892034846266875.8 \(\Z/6\Z\) Not in database
$16$ Deg 16 \(\Z/4\Z \oplus \Z/4\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \oplus \Z/8\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \oplus \Z/8\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \oplus \Z/6\Z\) Not in database
$16$ Deg 16 \(\Z/12\Z\) Not in database
$16$ Deg 16 \(\Z/12\Z\) Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.