Properties

Label 2300.f
Number of curves $1$
Conductor $2300$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 2300.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2300.f1 2300d1 \([0, 1, 0, -258, 1613]\) \(-7626496/575\) \(-143750000\) \([]\) \(576\) \(0.31367\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 2300.f1 has rank \(1\).

Complex multiplication

The elliptic curves in class 2300.f do not have complex multiplication.

Modular form 2300.2.a.f

sage: E.q_eigenform(10)
 
\(q + q^{3} + 2 q^{7} - 2 q^{9} - 4 q^{11} - q^{13} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display