Label 229320ec
Number of curves $1$
Conductor $229320$
CM no
Rank $0$

Related objects


Learn more

Show commands: SageMath
sage: E = EllipticCurve("ec1")
sage: E.isogeny_class()

Elliptic curves in class 229320ec

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
229320.t1 229320ec1 \([0, 0, 0, 733677, 22276478]\) \(10149078716/5923125\) \(-25489581380565120000\) \([]\) \(3612672\) \(2.4132\) \(\Gamma_0(N)\)-optimal


sage: E.rank()

The elliptic curve 229320ec1 has rank \(0\).

Complex multiplication

The elliptic curves in class 229320ec do not have complex multiplication.

Modular form

sage: E.q_eigenform(10)
\(q - q^{5} - 3q^{11} - q^{13} - q^{17} + q^{19} + O(q^{20})\)  Toggle raw display