Label 229320bz
Number of curves $1$
Conductor $229320$
CM no
Rank $0$

Related objects


Learn more

Show commands: SageMath
sage: E = EllipticCurve("bz1")
sage: E.isogeny_class()

Elliptic curves in class 229320bz

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
229320.x1 229320bz1 \([0, 0, 0, -5016963, 4501672238]\) \(-7791602019623044/375378046875\) \(-672803923362480000000\) \([]\) \(10386432\) \(2.7587\) \(\Gamma_0(N)\)-optimal


sage: E.rank()

The elliptic curve 229320bz1 has rank \(0\).

Complex multiplication

The elliptic curves in class 229320bz do not have complex multiplication.

Modular form

sage: E.q_eigenform(10)
\(q - q^{5} - 3q^{11} + q^{13} + 7q^{17} + 6q^{19} + O(q^{20})\)  Toggle raw display