Label 229320bc
Number of curves $1$
Conductor $229320$
CM no
Rank $1$

Related objects


Learn more

Show commands: SageMath
sage: E = EllipticCurve("bc1")
sage: E.isogeny_class()

Elliptic curves in class 229320bc

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
229320.h1 229320bc1 \([0, 0, 0, 3717, 44982]\) \(11090466/8125\) \(-4160782080000\) \([]\) \(444416\) \(1.1097\) \(\Gamma_0(N)\)-optimal


sage: E.rank()

The elliptic curve 229320bc1 has rank \(1\).

Complex multiplication

The elliptic curves in class 229320bc do not have complex multiplication.

Modular form 229320.2.a.bc

sage: E.q_eigenform(10)
\(q - q^{5} - 5q^{11} + q^{13} + 8q^{17} + 4q^{19} + O(q^{20})\)  Toggle raw display