Label 229320.s
Number of curves $1$
Conductor $229320$
CM no
Rank $1$

Related objects


Learn more

Show commands: SageMath
sage: E = EllipticCurve("s1")
sage: E.isogeny_class()

Elliptic curves in class 229320.s

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
229320.s1 229320dt1 \([0, 0, 0, 42, 497]\) \(14336/195\) \(-111449520\) \([]\) \(69120\) \(0.22484\) \(\Gamma_0(N)\)-optimal


sage: E.rank()

The elliptic curve 229320.s1 has rank \(1\).

Complex multiplication

The elliptic curves in class 229320.s do not have complex multiplication.

Modular form 229320.2.a.s

sage: E.q_eigenform(10)
\(q - q^{5} - 3q^{11} - q^{13} - 3q^{17} + 8q^{19} + O(q^{20})\)  Toggle raw display