Label 229320.f
Number of curves $1$
Conductor $229320$
CM no
Rank $1$

Related objects


Learn more

Show commands: SageMath
sage: E = EllipticCurve("f1")
sage: E.isogeny_class()

Elliptic curves in class 229320.f

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
229320.f1 229320bb1 \([0, 0, 0, 2877, 13678]\) \(71997884/43875\) \(-1604873088000\) \([]\) \(359424\) \(1.0312\) \(\Gamma_0(N)\)-optimal


sage: E.rank()

The elliptic curve 229320.f1 has rank \(1\).

Complex multiplication

The elliptic curves in class 229320.f do not have complex multiplication.

Modular form 229320.2.a.f

sage: E.q_eigenform(10)
\(q - q^{5} - 5q^{11} + q^{13} + q^{17} - 6q^{19} + O(q^{20})\)  Toggle raw display