Label 229320.ep
Number of curves $1$
Conductor $229320$
CM no
Rank $0$

Related objects


Learn more

Show commands: SageMath
sage: E = EllipticCurve("ep1")
sage: E.isogeny_class()

Elliptic curves in class 229320.ep

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
229320.ep1 229320en1 \([0, 0, 0, 259308, 52639524]\) \(1354752/1625\) \(-2312943495643872000\) \([]\) \(2757888\) \(2.2100\) \(\Gamma_0(N)\)-optimal


sage: E.rank()

The elliptic curve 229320.ep1 has rank \(0\).

Complex multiplication

The elliptic curves in class 229320.ep do not have complex multiplication.

Modular form 229320.2.a.ep

sage: E.q_eigenform(10)
\(q + q^{5} + 3q^{11} + q^{13} + 2q^{17} + 4q^{19} + O(q^{20})\)  Toggle raw display