Label 229320.e
Number of curves $1$
Conductor $229320$
CM no
Rank $1$

Related objects


Learn more

Show commands: SageMath
sage: E = EllipticCurve("e1")
sage: E.isogeny_class()

Elliptic curves in class 229320.e

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
229320.e1 229320ba1 \([0, 0, 0, -10326603, 13403543398]\) \(-693346671296498/40610171875\) \(-7133136721637472000000\) \([]\) \(17971200\) \(2.9493\) \(\Gamma_0(N)\)-optimal


sage: E.rank()

The elliptic curve 229320.e1 has rank \(1\).

Complex multiplication

The elliptic curves in class 229320.e do not have complex multiplication.

Modular form 229320.2.a.e

sage: E.q_eigenform(10)
\(q - q^{5} - 5q^{11} + q^{13} - 2q^{17} + 6q^{19} + O(q^{20})\)  Toggle raw display