Properties

Label 229320.dj
Number of curves $1$
Conductor $229320$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("dj1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 229320.dj

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
229320.dj1 229320w1 \([0, 0, 0, -8967, 334474]\) \(-177953104/4875\) \(-2184410592000\) \([]\) \(340992\) \(1.1489\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 229320.dj1 has rank \(2\).

Complex multiplication

The elliptic curves in class 229320.dj do not have complex multiplication.

Modular form 229320.2.a.dj

sage: E.q_eigenform(10)
 
\(q + q^{5} - q^{11} - q^{13} - 3 q^{17} - 8 q^{19} + O(q^{20})\)  Toggle raw display