Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 229242b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
229242.h1 | 229242b1 | \([1, 0, 0, -20834021, 36600720897]\) | \(-1000099030268818209411019729/6608026478667055104\) | \(-6608026478667055104\) | \([7]\) | \(10536960\) | \(2.7940\) | \(\Gamma_0(N)\)-optimal |
229242.h2 | 229242b2 | \([1, 0, 0, 148038319, -450912048483]\) | \(358794805479514151598884837231/295475652831033359840216724\) | \(-295475652831033359840216724\) | \([]\) | \(73758720\) | \(3.7670\) |
Rank
sage: E.rank()
The elliptic curves in class 229242b have rank \(0\).
Complex multiplication
The elliptic curves in class 229242b do not have complex multiplication.Modular form 229242.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.