Properties

 Label 22848ci Number of curves $4$ Conductor $22848$ CM no Rank $0$ Graph

Related objects

Show commands for: SageMath
sage: E = EllipticCurve("ci1")

sage: E.isogeny_class()

Elliptic curves in class 22848ci

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
22848.be4 22848ci1 $$[0, -1, 0, 63, -51615]$$ $$103823/4386816$$ $$-1149977493504$$ $$[2]$$ $$36864$$ $$0.99312$$ $$\Gamma_0(N)$$-optimal
22848.be3 22848ci2 $$[0, -1, 0, -20417, -1096095]$$ $$3590714269297/73410624$$ $$19244154617856$$ $$[2, 2]$$ $$73728$$ $$1.3397$$
22848.be2 22848ci3 $$[0, -1, 0, -43457, 1857633]$$ $$34623662831857/14438442312$$ $$3784951021436928$$ $$[4]$$ $$147456$$ $$1.6863$$
22848.be1 22848ci4 $$[0, -1, 0, -325057, -71224223]$$ $$14489843500598257/6246072$$ $$1637370298368$$ $$[2]$$ $$147456$$ $$1.6863$$

Rank

sage: E.rank()

The elliptic curves in class 22848ci have rank $$0$$.

Complex multiplication

The elliptic curves in class 22848ci do not have complex multiplication.

Modular form 22848.2.a.ci

sage: E.q_eigenform(10)

$$q - q^{3} + 2q^{5} + q^{7} + q^{9} + 6q^{13} - 2q^{15} + q^{17} + O(q^{20})$$

Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)$$

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels.