Properties

Label 22800.t
Number of curves $4$
Conductor $22800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("22800.t1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 22800.t

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
22800.t1 22800ca4 [0, -1, 0, -248408, 47667312] [2] 147456  
22800.t2 22800ca2 [0, -1, 0, -20408, 243312] [2, 2] 73728  
22800.t3 22800ca1 [0, -1, 0, -12408, -524688] [2] 36864 \(\Gamma_0(N)\)-optimal
22800.t4 22800ca3 [0, -1, 0, 79592, 1843312] [2] 147456  

Rank

sage: E.rank()
 

The elliptic curves in class 22800.t have rank \(1\).

Modular form 22800.2.a.t

sage: E.q_eigenform(10)
 
\( q - q^{3} + q^{9} - 4q^{11} - 2q^{13} - 2q^{17} + q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.