Show commands for:
SageMath
sage: E = EllipticCurve("em1")
sage: E.isogeny_class()
Elliptic curves in class 227430em
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
227430.cf3 | 227430em1 | [1, -1, 0, -11439, -294435] | [2] | 921600 | \(\Gamma_0(N)\)-optimal |
227430.cf2 | 227430em2 | [1, -1, 0, -76419, 7932033] | [2, 2] | 1843200 | |
227430.cf1 | 227430em3 | [1, -1, 0, -1213569, 514873503] | [2] | 3686400 | |
227430.cf4 | 227430em4 | [1, -1, 0, 21051, 26704755] | [2] | 3686400 |
Rank
sage: E.rank()
The elliptic curves in class 227430em have rank \(0\).
Complex multiplication
The elliptic curves in class 227430em do not have complex multiplication.Modular form 227430.2.a.em
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.