# Properties

 Label 227430.j Number of curves $2$ Conductor $227430$ CM no Rank $1$ Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("227430.j1")

sage: E.isogeny_class()

## Elliptic curves in class 227430.j

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
227430.j1 227430gf2 [1, -1, 0, -99205575, 379606831811]  37355520
227430.j2 227430gf1 [1, -1, 0, -8461005, 1220123825]  18677760 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 227430.j have rank $$1$$.

## Modular form 227430.2.a.j

sage: E.q_eigenform(10)

$$q - q^{2} + q^{4} - q^{5} - q^{7} - q^{8} + q^{10} + 2q^{13} + q^{14} + q^{16} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 