Properties

Label 227430.ec6
Conductor $227430$
Discriminant $-6.453\times 10^{15}$
j-invariant \( \frac{109902239}{188160} \)
CM no
Rank $1$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([1, -1, 1, 32422, -3152743]) # or
 
sage: E = EllipticCurve("227430.ec6")
 
gp: E = ellinit([1, -1, 1, 32422, -3152743]) \\ or
 
gp: E = ellinit("227430.ec6")
 
magma: E := EllipticCurve([1, -1, 1, 32422, -3152743]); // or
 
magma: E := EllipticCurve("227430.ec6");
 

\(y^2+xy+y=x^3-x^2+32422x-3152743\)

Mordell-Weil group structure

\(\Z\times \Z/{2}\Z\)

Infinite order Mordell-Weil generator and height

sage: E.gens()
 
magma: Generators(E);
 

\(P\) =  \( \left(195, 3151\right) \)
\(\hat{h}(P)\) ≈  $0.85195492244433736999500458691$

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(81, -41\right) \)

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\( \left(81, -41\right) \), \( \left(117, 1435\right) \), \( \left(117, -1553\right) \), \( \left(195, 3151\right) \), \( \left(195, -3347\right) \), \( \left(537, 12727\right) \), \( \left(537, -13265\right) \), \( \left(1525, 59163\right) \), \( \left(1525, -60689\right) \)

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 227430 \)  =  \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 19^{2}\)
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: \(-6453219514371840 \)  =  \(-1 \cdot 2^{8} \cdot 3^{7} \cdot 5 \cdot 7^{2} \cdot 19^{6} \)
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{109902239}{188160} \)  =  \(2^{-8} \cdot 3^{-1} \cdot 5^{-1} \cdot 7^{-2} \cdot 479^{3}\)
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: \(1\)
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: \(0.85195492244433736999500458691\)
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: \(0.22217473104297402435978540471\)
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: \( 256 \)  = \( 2^{3}\cdot2^{2}\cdot1\cdot2\cdot2^{2} \)
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: \(2\)
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: \(1\) (exact)

Modular invariants

Modular form 227430.2.a.ec

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q + q^{2} + q^{4} - q^{5} + q^{7} + q^{8} - q^{10} - 4q^{11} + 2q^{13} + q^{14} + q^{16} - 2q^{17} + O(q^{20}) \)

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 1769472
\( \Gamma_0(N) \)-optimal: yes
Manin constant: 1

Special L-value

sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

\( L'(E,1) \) ≈ \( 12.114102768307740751516777907585357973 \)

Local data

This elliptic curve is semistable. There are 5 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(8\) \(I_{8}\) Split multiplicative -1 1 8 8
\(3\) \(4\) \(I_1^{*}\) Additive -1 2 7 1
\(5\) \(1\) \(I_{1}\) Non-split multiplicative 1 1 1 1
\(7\) \(2\) \(I_{2}\) Split multiplicative -1 1 2 2
\(19\) \(4\) \(I_0^{*}\) Additive -1 2 6 0

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X122.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^4\Z_2)$ generated by $\left(\begin{array}{rr} 3 & 3 \\ 0 & 3 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 8 & 3 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 0 & 7 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 0 & 3 \end{array}\right),\left(\begin{array}{rr} 5 & 0 \\ 0 & 3 \end{array}\right)$ and has index 24.

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(2\) B

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]
 

\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.

No Iwasawa invariant data is available for this curve.

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 227430.ec consists of 6 curves linked by isogenies of degrees dividing 8.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ \(\Q(\sqrt{-15}) \) \(\Z/2\Z \times \Z/2\Z\) Not in database
$2$ \(\Q(\sqrt{57}) \) \(\Z/4\Z\) Not in database
$2$ \(\Q(\sqrt{-95}) \) \(\Z/4\Z\) Not in database
$4$ \(\Q(\sqrt{-15}, \sqrt{57})\) \(\Z/2\Z \times \Z/4\Z\) Not in database
$4$ \(\Q(\sqrt{57}, \sqrt{105})\) \(\Z/8\Z\) Not in database
$4$ \(\Q(\sqrt{-7}, \sqrt{57})\) \(\Z/8\Z\) Not in database
$8$ Deg 8 \(\Z/2\Z \times \Z/4\Z\) Not in database
$8$ 8.0.380016036000000.60 \(\Z/8\Z\) Not in database
$8$ 8.0.15840599000625.5 \(\Z/2\Z \times \Z/8\Z\) Not in database
$8$ Deg 8 \(\Z/6\Z\) Not in database
$16$ Deg 16 \(\Z/4\Z \times \Z/4\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/8\Z\) Not in database
$16$ Deg 16 \(\Z/16\Z\) Not in database
$16$ Deg 16 \(\Z/16\Z\) Not in database
$16$ Deg 16 \(\Z/16\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/6\Z\) Not in database
$16$ Deg 16 \(\Z/12\Z\) Not in database
$16$ Deg 16 \(\Z/12\Z\) Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.