# Properties

 Label 22696a1 Conductor 22696 Discriminant 726272 j-invariant $$\frac{504871936}{2837}$$ CM no Rank 3 Torsion Structure $$\mathrm{Trivial}$$

# Related objects

Show commands for: Magma / SageMath / Pari/GP

## Minimal Weierstrass equation

magma: E := EllipticCurve([0, 1, 0, -105, 379]); // or

magma: E := EllipticCurve("22696a1");

sage: E = EllipticCurve([0, 1, 0, -105, 379]) # or

sage: E = EllipticCurve("22696a1")

gp: E = ellinit([0, 1, 0, -105, 379]) \\ or

gp: E = ellinit("22696a1")

$$y^2 = x^{3} + x^{2} - 105 x + 379$$

## Mordell-Weil group structure

$$\Z^3$$

### Infinite order Mordell-Weil generators and heights

magma: Generators(E);

sage: E.gens()

 $$P$$ = $$\left(45, -298\right)$$ $$\left(-9, 26\right)$$ $$\left(-3, 26\right)$$ $$\hat{h}(P)$$ ≈ 3.11189793918 1.88100029123 1.72799047686

## Integral points

magma: IntegralPoints(E);

sage: E.integral_points()

$$\left(-11, 18\right)$$, $$\left(-10, 23\right)$$, $$\left(-9, 26\right)$$, $$\left(-3, 26\right)$$, $$\left(-1, 22\right)$$, $$\left(3, 10\right)$$, $$\left(5, 2\right)$$, $$\left(6, 1\right)$$, $$\left(7, 6\right)$$, $$\left(11, 26\right)$$, $$\left(14, 43\right)$$, $$\left(27, 134\right)$$, $$\left(35, 202\right)$$, $$\left(45, 298\right)$$, $$\left(61, 474\right)$$, $$\left(503, 11290\right)$$, $$\left(579, 13942\right)$$, $$\left(1701, 70174\right)$$, $$\left(2419, 118998\right)$$, $$\left(109141, 36056526\right)$$

Note: only one of each pair $\pm P$ is listed.

## Invariants

 magma: Conductor(E);  sage: E.conductor().factor()  gp: ellglobalred(E)[1] Conductor: $$22696$$ = $$2^{3} \cdot 2837$$ magma: Discriminant(E);  sage: E.discriminant().factor()  gp: E.disc Discriminant: $$726272$$ = $$2^{8} \cdot 2837$$ magma: jInvariant(E);  sage: E.j_invariant().factor()  gp: E.j j-invariant: $$\frac{504871936}{2837}$$ = $$2^{10} \cdot 79^{3} \cdot 2837^{-1}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 magma: Rank(E);  sage: E.rank() Rank: $$3$$ magma: Regulator(E);  sage: E.regulator() Regulator: $$0.48300720723$$ magma: RealPeriod(E);  sage: E.period_lattice().omega()  gp: E.omega[1] Real period: $$2.8673192008$$ magma: TamagawaNumbers(E);  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]] Tamagawa product: $$4$$  = $$2^{2}\cdot1$$ magma: Order(TorsionSubgroup(E));  sage: E.torsion_order()  gp: elltors(E)[1] Torsion order: $$1$$ magma: MordellWeilShaInformation(E);  sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (rounded)

## Modular invariants

#### Modular form 22696.2.a.a

magma: ModularForm(E);

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

$$q - 2q^{3} - 4q^{5} - 3q^{7} + q^{9} - 6q^{11} - 6q^{13} + 8q^{15} - 3q^{17} - 5q^{19} + O(q^{20})$$

 magma: ModularDegree(E);  sage: E.modular_degree() Modular degree: 8768 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

$$L^{(3)}(E,1)/3!$$ ≈ $$5.53974335766$$

## Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

sage: E.local_data()

gp: ellglobalred(E)[5]

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$4$$ $$I_1^{*}$$ Additive 1 3 8 0
$$2837$$ $$1$$ $$I_{1}$$ Non-split multiplicative 1 1 1 1

## Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ .

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

Note: $$p$$-adic regulator data only exists for primes $$p\ge5$$ of good ordinary reduction.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 2837 add ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ss ordinary nonsplit - 3 3 3 3 3 3 3 3 3 3 3 3 3,3 3 ? - 0 0 0 0 0 0 0 0 0 0 0 0 0,0 0 ?

An entry ? indicates that the invariants have not yet been computed.

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has no rational isogenies. Its isogeny class 22696a consists of this curve only.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
3 3.3.11348.1 $$\Z/2\Z$$ Not in database
6 6.6.365340644048.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.