Properties

Label 2254.a
Number of curves $2$
Conductor $2254$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("a1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 2254.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2254.a1 2254a2 \([1, 0, 1, -29671, -1844118]\) \(24553362849625/1755162752\) \(206493142610048\) \([2]\) \(10752\) \(1.4937\)  
2254.a2 2254a1 \([1, 0, 1, 1689, -125590]\) \(4533086375/60669952\) \(-7137759182848\) \([2]\) \(5376\) \(1.1471\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 2254.a have rank \(0\).

Complex multiplication

The elliptic curves in class 2254.a do not have complex multiplication.

Modular form 2254.2.a.a

sage: E.q_eigenform(10)
 
\(q - q^{2} - 2q^{3} + q^{4} + 2q^{6} - q^{8} + q^{9} + 4q^{11} - 2q^{12} + q^{16} - 6q^{17} - q^{18} + 6q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.