Properties

Label 225.d
Number of curves 2
Conductor 225
CM -3
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("225.d1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 225.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
225.d1 225b2 [0, 0, 1, 0, -4219] [] 120  
225.d2 225b1 [0, 0, 1, 0, 156] [3] 40 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 225.d have rank \(0\).

Modular form 225.2.a.d

sage: E.q_eigenform(10)
 
\( q - 2q^{4} + 5q^{7} + 5q^{13} + 4q^{16} - q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.