Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 225.c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
---|---|---|---|---|---|---|---|---|---|
225.c1 | 225a2 | \([0, 0, 1, 0, -34]\) | \(0\) | \(-492075\) | \([]\) | \(24\) | \(-0.22892\) | \(-3\) | |
225.c2 | 225a1 | \([0, 0, 1, 0, 1]\) | \(0\) | \(-675\) | \([]\) | \(8\) | \(-0.77822\) | \(\Gamma_0(N)\)-optimal | \(-3\) |
Rank
sage: E.rank()
The elliptic curves in class 225.c have rank \(1\).
Complex multiplication
Each elliptic curve in class 225.c has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-3}) \).Modular form 225.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.