Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
2240.a1 |
2240s1 |
2240.a |
2240s |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{14} \cdot 5^{5} \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$3840$ |
$0.738044$ |
$-30211716096/1071875$ |
$[0, 0, 0, -1648, -26528]$ |
\(y^2=x^3-1648x-26528\) |
2240.b1 |
2240v1 |
2240.b |
2240v |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{6} \cdot 5 \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.756350924$ |
$1$ |
|
$2$ |
$192$ |
$-0.673357$ |
$13824/35$ |
$[0, 0, 0, 2, -2]$ |
\(y^2=x^3+2x-2\) |
2240.c1 |
2240j1 |
2240.c |
2240j |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{14} \cdot 5 \cdot 7^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$1920$ |
$0.435507$ |
$14155776/84035$ |
$[0, 0, 0, 128, 1696]$ |
\(y^2=x^3+128x+1696\) |
2240.d1 |
2240n1 |
2240.d |
2240n |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{6} \cdot 5^{11} \cdot 7^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.091225822$ |
$1$ |
|
$6$ |
$10560$ |
$1.319101$ |
$722603599520256/820654296875$ |
$[0, 0, 0, 7478, 244186]$ |
\(y^2=x^3+7478x+244186\) |
2240.e1 |
2240q1 |
2240.e |
2240q |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{6} \cdot 5^{3} \cdot 7^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$1344$ |
$0.578152$ |
$-88478050816/102942875$ |
$[0, -1, 0, -371, -4655]$ |
\(y^2=x^3-x^2-371x-4655\) |
2240.f1 |
2240a1 |
2240.f |
2240a |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{6} \cdot 5^{5} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.889516365$ |
$1$ |
|
$2$ |
$320$ |
$-0.140280$ |
$1124864/21875$ |
$[0, -1, 0, 9, -59]$ |
\(y^2=x^3-x^2+9x-59\) |
2240.g1 |
2240c2 |
2240.g |
2240c |
$2$ |
$3$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{14} \cdot 5 \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$1152$ |
$0.604121$ |
$-225637236736/1715$ |
$[0, -1, 0, -3221, -69299]$ |
\(y^2=x^3-x^2-3221x-69299\) |
2240.g2 |
2240c1 |
2240.g |
2240c |
$2$ |
$3$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{14} \cdot 5^{3} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$384$ |
$0.054815$ |
$-65536/875$ |
$[0, -1, 0, -21, -179]$ |
\(y^2=x^3-x^2-21x-179\) |
2240.h1 |
2240h1 |
2240.h |
2240h |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{6} \cdot 5 \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$192$ |
$-0.316967$ |
$-6229504/1715$ |
$[0, -1, 0, -15, -23]$ |
\(y^2=x^3-x^2-15x-23\) |
2240.i1 |
2240x1 |
2240.i |
2240x |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{6} \cdot 5^{3} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.257221085$ |
$1$ |
|
$4$ |
$192$ |
$-0.177352$ |
$-738763264/875$ |
$[0, -1, 0, -75, 277]$ |
\(y^2=x^3-x^2-75x+277\) |
2240.j1 |
2240ba1 |
2240.j |
2240ba |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{14} \cdot 5 \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$256$ |
$-0.214758$ |
$-1024/35$ |
$[0, -1, 0, -5, -35]$ |
\(y^2=x^3-x^2-5x-35\) |
2240.k1 |
2240m3 |
2240.k |
2240m |
$3$ |
$9$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{6} \cdot 5^{9} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$0.631888037$ |
$1$ |
|
$4$ |
$864$ |
$0.474036$ |
$-250523582464/13671875$ |
$[0, -1, 0, -525, -4673]$ |
\(y^2=x^3-x^2-525x-4673\) |
2240.k2 |
2240m1 |
2240.k |
2240m |
$3$ |
$9$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{6} \cdot 5 \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$0.631888037$ |
$1$ |
|
$2$ |
$96$ |
$-0.624577$ |
$-262144/35$ |
$[0, -1, 0, -5, 7]$ |
\(y^2=x^3-x^2-5x+7\) |
2240.k3 |
2240m2 |
2240.k |
2240m |
$3$ |
$9$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{6} \cdot 5^{3} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$0.210629345$ |
$1$ |
|
$4$ |
$288$ |
$-0.075270$ |
$71991296/42875$ |
$[0, -1, 0, 35, -25]$ |
\(y^2=x^3-x^2+35x-25\) |
2240.l1 |
2240o4 |
2240.l |
2240o |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( 2^{15} \cdot 5^{2} \cdot 7^{2} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.172 |
2B |
$1$ |
$1$ |
|
$3$ |
$3072$ |
$1.122601$ |
$481927184300808/1225$ |
$[0, 0, 0, -52268, 4599408]$ |
\(y^2=x^3-52268x+4599408\) |
2240.l2 |
2240o3 |
2240.l |
2240o |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( 2^{15} \cdot 5^{2} \cdot 7^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.187 |
2B |
$1$ |
$1$ |
|
$1$ |
$3072$ |
$1.122601$ |
$262389836808/144120025$ |
$[0, 0, 0, -4268, 24208]$ |
\(y^2=x^3-4268x+24208\) |
2240.l3 |
2240o2 |
2240.l |
2240o |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( 2^{12} \cdot 5^{4} \cdot 7^{4} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.19 |
2Cs |
$1$ |
$1$ |
|
$3$ |
$1536$ |
$0.776027$ |
$942344950464/1500625$ |
$[0, 0, 0, -3268, 71808]$ |
\(y^2=x^3-3268x+71808\) |
2240.l4 |
2240o1 |
2240.l |
2240o |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{6} \cdot 5^{8} \cdot 7^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.200 |
2B |
$1$ |
$1$ |
|
$1$ |
$768$ |
$0.429453$ |
$-5053029696/19140625$ |
$[0, 0, 0, -143, 1808]$ |
\(y^2=x^3-143x+1808\) |
2240.m1 |
2240t3 |
2240.m |
2240t |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( 2^{15} \cdot 5^{2} \cdot 7^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.187 |
2B |
$4.689996637$ |
$1$ |
|
$3$ |
$3072$ |
$1.122601$ |
$481927184300808/1225$ |
$[0, 0, 0, -52268, -4599408]$ |
\(y^2=x^3-52268x-4599408\) |
2240.m2 |
2240t4 |
2240.m |
2240t |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( 2^{15} \cdot 5^{2} \cdot 7^{8} \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.172 |
2B |
$1.172499159$ |
$1$ |
|
$9$ |
$3072$ |
$1.122601$ |
$262389836808/144120025$ |
$[0, 0, 0, -4268, -24208]$ |
\(y^2=x^3-4268x-24208\) |
2240.m3 |
2240t2 |
2240.m |
2240t |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( 2^{12} \cdot 5^{4} \cdot 7^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.19 |
2Cs |
$2.344998318$ |
$1$ |
|
$7$ |
$1536$ |
$0.776027$ |
$942344950464/1500625$ |
$[0, 0, 0, -3268, -71808]$ |
\(y^2=x^3-3268x-71808\) |
2240.m4 |
2240t1 |
2240.m |
2240t |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{6} \cdot 5^{8} \cdot 7^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.200 |
2B |
$4.689996637$ |
$1$ |
|
$1$ |
$768$ |
$0.429453$ |
$-5053029696/19140625$ |
$[0, 0, 0, -143, -1808]$ |
\(y^2=x^3-143x-1808\) |
2240.n1 |
2240f3 |
2240.n |
2240f |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( 2^{19} \cdot 5^{2} \cdot 7^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.58 |
2B |
$1$ |
$1$ |
|
$1$ |
$3072$ |
$1.078709$ |
$2121328796049/120050$ |
$[0, 0, 0, -17132, -863056]$ |
\(y^2=x^3-17132x-863056\) |
2240.n2 |
2240f4 |
2240.n |
2240f |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( 2^{19} \cdot 5^{8} \cdot 7 \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.50 |
2B |
$1$ |
$1$ |
|
$3$ |
$3072$ |
$1.078709$ |
$74565301329/5468750$ |
$[0, 0, 0, -5612, 151216]$ |
\(y^2=x^3-5612x+151216\) |
2240.n3 |
2240f2 |
2240.n |
2240f |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( 2^{20} \cdot 5^{4} \cdot 7^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.1 |
2Cs |
$1$ |
$1$ |
|
$3$ |
$1536$ |
$0.732135$ |
$611960049/122500$ |
$[0, 0, 0, -1132, -11856]$ |
\(y^2=x^3-1132x-11856\) |
2240.n4 |
2240f1 |
2240.n |
2240f |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{22} \cdot 5^{2} \cdot 7 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.103 |
2B |
$1$ |
$1$ |
|
$1$ |
$768$ |
$0.385561$ |
$1367631/2800$ |
$[0, 0, 0, 148, -1104]$ |
\(y^2=x^3+148x-1104\) |
2240.o1 |
2240e3 |
2240.o |
2240e |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( 2^{15} \cdot 5^{4} \cdot 7 \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$1$ |
$1$ |
|
$3$ |
$768$ |
$0.335740$ |
$123505992/4375$ |
$[0, 0, 0, -332, 2256]$ |
\(y^2=x^3-332x+2256\) |
2240.o2 |
2240e2 |
2240.o |
2240e |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( 2^{12} \cdot 5^{2} \cdot 7^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$1$ |
$1$ |
|
$3$ |
$384$ |
$-0.010833$ |
$3796416/1225$ |
$[0, 0, 0, -52, -96]$ |
\(y^2=x^3-52x-96\) |
2240.o3 |
2240e1 |
2240.o |
2240e |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( 2^{6} \cdot 5 \cdot 7 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$1$ |
$4$ |
$2$ |
$1$ |
$192$ |
$-0.357407$ |
$179406144/35$ |
$[0, 0, 0, -47, -124]$ |
\(y^2=x^3-47x-124\) |
2240.o4 |
2240e4 |
2240.o |
2240e |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{15} \cdot 5 \cdot 7^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$1$ |
$1$ |
|
$1$ |
$768$ |
$0.335740$ |
$10941048/12005$ |
$[0, 0, 0, 148, -656]$ |
\(y^2=x^3+148x-656\) |
2240.p1 |
2240k3 |
2240.p |
2240k |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( 2^{15} \cdot 5^{4} \cdot 7 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$0.711578357$ |
$1$ |
|
$7$ |
$768$ |
$0.335740$ |
$123505992/4375$ |
$[0, 0, 0, -332, -2256]$ |
\(y^2=x^3-332x-2256\) |
2240.p2 |
2240k2 |
2240.p |
2240k |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( 2^{12} \cdot 5^{2} \cdot 7^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$1.423156714$ |
$1$ |
|
$9$ |
$384$ |
$-0.010833$ |
$3796416/1225$ |
$[0, 0, 0, -52, 96]$ |
\(y^2=x^3-52x+96\) |
2240.p3 |
2240k1 |
2240.p |
2240k |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( 2^{6} \cdot 5 \cdot 7 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$2.846313429$ |
$1$ |
|
$1$ |
$192$ |
$-0.357407$ |
$179406144/35$ |
$[0, 0, 0, -47, 124]$ |
\(y^2=x^3-47x+124\) |
2240.p4 |
2240k4 |
2240.p |
2240k |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{15} \cdot 5 \cdot 7^{4} \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$2.846313429$ |
$1$ |
|
$7$ |
$768$ |
$0.335740$ |
$10941048/12005$ |
$[0, 0, 0, 148, 656]$ |
\(y^2=x^3+148x+656\) |
2240.q1 |
2240y4 |
2240.q |
2240y |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( 2^{19} \cdot 5^{2} \cdot 7^{4} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.49 |
2B |
$1$ |
$1$ |
|
$3$ |
$3072$ |
$1.078709$ |
$2121328796049/120050$ |
$[0, 0, 0, -17132, 863056]$ |
\(y^2=x^3-17132x+863056\) |
2240.q2 |
2240y3 |
2240.q |
2240y |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( 2^{19} \cdot 5^{8} \cdot 7 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.60 |
2B |
$1$ |
$1$ |
|
$1$ |
$3072$ |
$1.078709$ |
$74565301329/5468750$ |
$[0, 0, 0, -5612, -151216]$ |
\(y^2=x^3-5612x-151216\) |
2240.q3 |
2240y2 |
2240.q |
2240y |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( 2^{20} \cdot 5^{4} \cdot 7^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.2 |
2Cs |
$1$ |
$1$ |
|
$3$ |
$1536$ |
$0.732135$ |
$611960049/122500$ |
$[0, 0, 0, -1132, 11856]$ |
\(y^2=x^3-1132x+11856\) |
2240.q4 |
2240y1 |
2240.q |
2240y |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{22} \cdot 5^{2} \cdot 7 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.101 |
2B |
$1$ |
$1$ |
|
$1$ |
$768$ |
$0.385561$ |
$1367631/2800$ |
$[0, 0, 0, 148, 1104]$ |
\(y^2=x^3+148x+1104\) |
2240.r1 |
2240p2 |
2240.r |
2240p |
$2$ |
$3$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{14} \cdot 5 \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$1152$ |
$0.604121$ |
$-225637236736/1715$ |
$[0, 1, 0, -3221, 69299]$ |
\(y^2=x^3+x^2-3221x+69299\) |
2240.r2 |
2240p1 |
2240.r |
2240p |
$2$ |
$3$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{14} \cdot 5^{3} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$384$ |
$0.054815$ |
$-65536/875$ |
$[0, 1, 0, -21, 179]$ |
\(y^2=x^3+x^2-21x+179\) |
2240.s1 |
2240b1 |
2240.s |
2240b |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{6} \cdot 5^{5} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$320$ |
$-0.140280$ |
$1124864/21875$ |
$[0, 1, 0, 9, 59]$ |
\(y^2=x^3+x^2+9x+59\) |
2240.t1 |
2240u1 |
2240.t |
2240u |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{6} \cdot 5^{3} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.408345036$ |
$1$ |
|
$2$ |
$1344$ |
$0.578152$ |
$-88478050816/102942875$ |
$[0, 1, 0, -371, 4655]$ |
\(y^2=x^3+x^2-371x+4655\) |
2240.u1 |
2240w3 |
2240.u |
2240w |
$3$ |
$9$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{6} \cdot 5^{9} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$0.252387828$ |
$1$ |
|
$4$ |
$864$ |
$0.474036$ |
$-250523582464/13671875$ |
$[0, 1, 0, -525, 4673]$ |
\(y^2=x^3+x^2-525x+4673\) |
2240.u2 |
2240w1 |
2240.u |
2240w |
$3$ |
$9$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{6} \cdot 5 \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$2.271490452$ |
$1$ |
|
$2$ |
$96$ |
$-0.624577$ |
$-262144/35$ |
$[0, 1, 0, -5, -7]$ |
\(y^2=x^3+x^2-5x-7\) |
2240.u3 |
2240w2 |
2240.u |
2240w |
$3$ |
$9$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{6} \cdot 5^{3} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$0.757163484$ |
$1$ |
|
$2$ |
$288$ |
$-0.075270$ |
$71991296/42875$ |
$[0, 1, 0, 35, 25]$ |
\(y^2=x^3+x^2+35x+25\) |
2240.v1 |
2240g1 |
2240.v |
2240g |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{14} \cdot 5 \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$256$ |
$-0.214758$ |
$-1024/35$ |
$[0, 1, 0, -5, 35]$ |
\(y^2=x^3+x^2-5x+35\) |
2240.w1 |
2240l1 |
2240.w |
2240l |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{6} \cdot 5 \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.387554873$ |
$1$ |
|
$2$ |
$192$ |
$-0.316967$ |
$-6229504/1715$ |
$[0, 1, 0, -15, 23]$ |
\(y^2=x^3+x^2-15x+23\) |
2240.x1 |
2240z1 |
2240.x |
2240z |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{6} \cdot 5^{3} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$192$ |
$-0.177352$ |
$-738763264/875$ |
$[0, 1, 0, -75, -277]$ |
\(y^2=x^3+x^2-75x-277\) |
2240.y1 |
2240r1 |
2240.y |
2240r |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{6} \cdot 5 \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$192$ |
$-0.673357$ |
$13824/35$ |
$[0, 0, 0, 2, 2]$ |
\(y^2=x^3+2x+2\) |
2240.z1 |
2240d1 |
2240.z |
2240d |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7 \) |
\( - 2^{14} \cdot 5^{5} \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$3840$ |
$0.738044$ |
$-30211716096/1071875$ |
$[0, 0, 0, -1648, 26528]$ |
\(y^2=x^3-1648x+26528\) |