Properties

Label 22386w
Number of curves 2
Conductor 22386
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("22386.y1")
sage: E.isogeny_class()

Elliptic curves in class 22386w

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
22386.y1 22386w1 [1, 0, 0, -155806, 23664452] 7 131712 \(\Gamma_0(N)\)-optimal
22386.y2 22386w2 [1, 0, 0, 864584, -1045089598] 1 921984  

Rank

sage: E.rank()

The elliptic curves in class 22386w have rank \(0\).

Modular form 22386.2.a.y

sage: E.q_eigenform(10)
\( q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + q^{7} + q^{8} + q^{9} - q^{10} - 2q^{11} + q^{12} - q^{13} + q^{14} - q^{15} + q^{16} + 4q^{17} + q^{18} - 8q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels.