Properties

 Label 22386g1 Conductor 22386 Discriminant 10659567050496 j-invariant $$\frac{6034224034719280009}{10659567050496}$$ CM no Rank 2 Torsion Structure $$\mathrm{Trivial}$$

Related objects

Show commands for: Magma / SageMath / Pari/GP

Minimal Weierstrass equation

magma: E := EllipticCurve([1, 0, 1, -37929, 2835628]); // or

magma: E := EllipticCurve("22386g1");

sage: E = EllipticCurve([1, 0, 1, -37929, 2835628]) # or

sage: E = EllipticCurve("22386g1")

gp: E = ellinit([1, 0, 1, -37929, 2835628]) \\ or

gp: E = ellinit("22386g1")

$$y^2 + x y + y = x^{3} - 37929 x + 2835628$$

Mordell-Weil group structure

$$\Z^2$$

Infinite order Mordell-Weil generators and heights

magma: Generators(E);

sage: E.gens()

 $$P$$ = $$\left(-181, 2034\right)$$ $$\left(-64, 2268\right)$$ $$\hat{h}(P)$$ ≈ 0.957748953305 2.55802240817

Integral points

magma: IntegralPoints(E);

sage: E.integral_points()

$$\left(-181, 2034\right)$$, $$\left(-181, -1854\right)$$, $$\left(-133, 2418\right)$$, $$\left(-133, -2286\right)$$, $$\left(-64, 2268\right)$$, $$\left(-64, -2205\right)$$, $$\left(62, 819\right)$$, $$\left(62, -882\right)$$, $$\left(104, 84\right)$$, $$\left(104, -189\right)$$, $$\left(107, 18\right)$$, $$\left(107, -126\right)$$, $$\left(116, -45\right)$$, $$\left(116, -72\right)$$, $$\left(139, 434\right)$$, $$\left(139, -574\right)$$, $$\left(251, 2898\right)$$, $$\left(251, -3150\right)$$, $$\left(386, 6570\right)$$, $$\left(386, -6957\right)$$, $$\left(602, 13779\right)$$, $$\left(602, -14382\right)$$, $$\left(4619, 311346\right)$$, $$\left(4619, -315966\right)$$, $$\left(8324, 755091\right)$$, $$\left(8324, -763416\right)$$

Invariants

 magma: Conductor(E);  sage: E.conductor().factor()  gp: ellglobalred(E)[1] Conductor: $$22386$$ = $$2 \cdot 3 \cdot 7 \cdot 13 \cdot 41$$ magma: Discriminant(E);  sage: E.discriminant().factor()  gp: E.disc Discriminant: $$10659567050496$$ = $$2^{8} \cdot 3^{13} \cdot 7^{2} \cdot 13 \cdot 41$$ magma: jInvariant(E);  sage: E.j_invariant().factor()  gp: E.j j-invariant: $$\frac{6034224034719280009}{10659567050496}$$ = $$2^{-8} \cdot 3^{-13} \cdot 7^{-2} \cdot 13^{-1} \cdot 41^{-1} \cdot 193^{3} \cdot 9433^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

BSD invariants

 magma: Rank(E);  sage: E.rank() Rank: $$2$$ magma: Regulator(E);  sage: E.regulator() Regulator: $$0.164739184198$$ magma: RealPeriod(E);  sage: E.period_lattice().omega()  gp: E.omega[1] Real period: $$0.721244138724$$ magma: TamagawaNumbers(E);  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]] Tamagawa product: $$52$$  = $$2\cdot13\cdot2\cdot1\cdot1$$ magma: Order(TorsionSubgroup(E));  sage: E.torsion_order()  gp: elltors(E)[1] Torsion order: $$1$$ magma: MordellWeilShaInformation(E);  sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (rounded)

Modular invariants

Modular form 22386.2.a.h

magma: ModularForm(E);

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

$$q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - q^{7} - q^{8} + q^{9} + q^{10} - 5q^{11} + q^{12} - q^{13} + q^{14} - q^{15} + q^{16} - 7q^{17} - q^{18} + 2q^{19} + O(q^{20})$$

 magma: ModularDegree(E);  sage: E.modular_degree() Modular degree: 86528 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

$$L^{(2)}(E,1)/2!$$ ≈ $$6.17849289308$$

Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

sage: E.local_data()

gp: ellglobalred(E)[5]

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$2$$ $$I_{8}$$ Non-split multiplicative 1 1 8 8
$$3$$ $$13$$ $$I_{13}$$ Split multiplicative -1 1 13 13
$$7$$ $$2$$ $$I_{2}$$ Non-split multiplicative 1 1 2 2
$$13$$ $$1$$ $$I_{1}$$ Non-split multiplicative 1 1 1 1
$$41$$ $$1$$ $$I_{1}$$ Non-split multiplicative 1 1 1 1

Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ .

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

Note: $$p$$-adic regulator data only exists for primes $$p\ge5$$ of good ordinary reduction.

Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 nonsplit split ordinary nonsplit ordinary nonsplit ordinary ordinary ordinary ordinary ordinary ss nonsplit ordinary ordinary 8 5 4 6 2 2 2 2 2 2 2 2,2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0,0 0 0 0

Isogenies

This curve has no rational isogenies. Its isogeny class 22386g consists of this curve only.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
3 3.3.6396.1 $$\Z/2\Z$$ Not in database
6 6.6.261652787136.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.