# Properties

 Label 22386.x1 Conductor 22386 Discriminant 594905980032 j-invariant $$\frac{285311789321435384726737}{594905980032}$$ CM no Rank 1 Torsion Structure $$\Z/{2}\Z$$

# Related objects

Show commands for: Magma / SageMath / Pari/GP

## Minimal Weierstrass equation

magma: E := EllipticCurve([1, 0, 0, -1371509, -618338655]); // or

magma: E := EllipticCurve("22386z4");

sage: E = EllipticCurve([1, 0, 0, -1371509, -618338655]) # or

sage: E = EllipticCurve("22386z4")

gp: E = ellinit([1, 0, 0, -1371509, -618338655]) \\ or

gp: E = ellinit("22386z4")

$$y^2 + x y = x^{3} - 1371509 x - 618338655$$

## Mordell-Weil group structure

$$\Z\times \Z/{2}\Z$$

### Infinite order Mordell-Weil generator and height

magma: Generators(E);

sage: E.gens()

 $$P$$ = $$\left(2746, 126391\right)$$ $$\hat{h}(P)$$ ≈ 2.3132776312

## Torsion generators

magma: TorsionSubgroup(E);

sage: E.torsion_subgroup().gens()

gp: elltors(E)

$$\left(-\frac{2705}{4}, \frac{2705}{8}\right)$$

## Integral points

magma: IntegralPoints(E);

sage: E.integral_points()

$$\left(2746, 126391\right)$$, $$\left(2746, -129137\right)$$

## Invariants

 magma: Conductor(E);  sage: E.conductor().factor()  gp: ellglobalred(E)[1] Conductor: $$22386$$ = $$2 \cdot 3 \cdot 7 \cdot 13 \cdot 41$$ magma: Discriminant(E);  sage: E.discriminant().factor()  gp: E.disc Discriminant: $$594905980032$$ = $$2^{7} \cdot 3^{4} \cdot 7^{2} \cdot 13^{4} \cdot 41$$ magma: jInvariant(E);  sage: E.j_invariant().factor()  gp: E.j j-invariant: $$\frac{285311789321435384726737}{594905980032}$$ = $$2^{-7} \cdot 3^{-4} \cdot 7^{-2} \cdot 13^{-4} \cdot 41^{-1} \cdot 1741^{3} \cdot 37813^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 magma: Rank(E);  sage: E.rank() Rank: $$1$$ magma: Regulator(E);  sage: E.regulator() Regulator: $$2.3132776312$$ magma: RealPeriod(E);  sage: E.period_lattice().omega()  gp: E.omega[1] Real period: $$0.139508248937$$ magma: TamagawaNumbers(E);  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]] Tamagawa product: $$112$$  = $$7\cdot2^{2}\cdot2\cdot2\cdot1$$ magma: Order(TorsionSubgroup(E));  sage: E.torsion_order()  gp: elltors(E)[1] Torsion order: $$2$$ magma: MordellWeilShaInformation(E);  sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (exact)

## Modular invariants

#### Modular form 22386.2.a.x

magma: ModularForm(E);

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

$$q + q^{2} + q^{3} + q^{4} - 2q^{5} + q^{6} + q^{7} + q^{8} + q^{9} - 2q^{10} + 4q^{11} + q^{12} - q^{13} + q^{14} - 2q^{15} + q^{16} - 2q^{17} + q^{18} - 4q^{19} + O(q^{20})$$

 magma: ModularDegree(E);  sage: E.modular_degree() Modular degree: 258048 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

$$L'(E,1)$$ ≈ $$9.03619672574$$

## Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

sage: E.local_data()

gp: ellglobalred(E)[5]

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$7$$ $$I_{7}$$ Split multiplicative -1 1 7 7
$$3$$ $$4$$ $$I_{4}$$ Split multiplicative -1 1 4 4
$$7$$ $$2$$ $$I_{2}$$ Split multiplicative -1 1 2 2
$$13$$ $$2$$ $$I_{4}$$ Non-split multiplicative 1 1 4 4
$$41$$ $$1$$ $$I_{1}$$ Split multiplicative -1 1 1 1

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X13g.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 3 \end{array}\right),\left(\begin{array}{rr} 5 & 5 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right)$ and has index 12.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 split split ordinary split ordinary nonsplit ordinary ordinary ss ordinary ordinary ordinary split ordinary ordinary 4 2 3 2 1 1 1 1 1,1 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0,0 0 0 0 0 0 0

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2 and 4.
Its isogeny class 22386.x consists of 4 curves linked by isogenies of degrees dividing 4.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 $$\Q(\sqrt{82})$$ $$\Z/2\Z \times \Z/2\Z$$ Not in database
$$\Q(\sqrt{-2})$$ $$\Z/4\Z$$ Not in database
$$\Q(\sqrt{-41})$$ $$\Z/4\Z$$ Not in database
4 $$\Q(\sqrt{-2}, \sqrt{-41})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.