Properties

 Label 22386.p1 Conductor 22386 Discriminant -237392322963978 j-invariant $$\frac{408411137424575375}{237392322963978}$$ CM no Rank 0 Torsion Structure $$\mathrm{Trivial}$$

Related objects

Show commands for: Magma / SageMath / Pari/GP

Minimal Weierstrass equation

magma: E := EllipticCurve([1, 1, 1, 15457, 55583]); // or

magma: E := EllipticCurve("22386p1");

sage: E = EllipticCurve([1, 1, 1, 15457, 55583]) # or

sage: E = EllipticCurve("22386p1")

gp: E = ellinit([1, 1, 1, 15457, 55583]) \\ or

gp: E = ellinit("22386p1")

$$y^2 + x y + y = x^{3} + x^{2} + 15457 x + 55583$$

Trivial

Integral points

magma: IntegralPoints(E);

sage: E.integral_points()

None

Invariants

 magma: Conductor(E);  sage: E.conductor().factor()  gp: ellglobalred(E)[1] Conductor: $$22386$$ = $$2 \cdot 3 \cdot 7 \cdot 13 \cdot 41$$ magma: Discriminant(E);  sage: E.discriminant().factor()  gp: E.disc Discriminant: $$-237392322963978$$ = $$-1 \cdot 2 \cdot 3 \cdot 7 \cdot 13^{10} \cdot 41$$ magma: jInvariant(E);  sage: E.j_invariant().factor()  gp: E.j j-invariant: $$\frac{408411137424575375}{237392322963978}$$ = $$2^{-1} \cdot 3^{-1} \cdot 5^{3} \cdot 7^{-1} \cdot 13^{-10} \cdot 41^{-1} \cdot 148387^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

BSD invariants

 magma: Rank(E);  sage: E.rank() Rank: $$0$$ magma: Regulator(E);  sage: E.regulator() Regulator: $$1$$ magma: RealPeriod(E);  sage: E.period_lattice().omega()  gp: E.omega[1] Real period: $$0.335372921425$$ magma: TamagawaNumbers(E);  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]] Tamagawa product: $$10$$  = $$1\cdot1\cdot1\cdot( 2 \cdot 5 )\cdot1$$ magma: Order(TorsionSubgroup(E));  sage: E.torsion_order()  gp: elltors(E)[1] Torsion order: $$1$$ magma: MordellWeilShaInformation(E);  sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (exact)

Modular invariants

Modular form 22386.2.a.p

magma: ModularForm(E);

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

$$q + q^{2} - q^{3} + q^{4} - q^{6} - q^{7} + q^{8} + q^{9} - 3q^{11} - q^{12} + q^{13} - q^{14} + q^{16} + 8q^{17} + q^{18} + 7q^{19} + O(q^{20})$$

 magma: ModularDegree(E);  sage: E.modular_degree() Modular degree: 116960 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

$$L(E,1)$$ ≈ $$3.35372921425$$

Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

sage: E.local_data()

gp: ellglobalred(E)[5]

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$1$$ $$I_{1}$$ Split multiplicative -1 1 1 1
$$3$$ $$1$$ $$I_{1}$$ Non-split multiplicative 1 1 1 1
$$7$$ $$1$$ $$I_{1}$$ Non-split multiplicative 1 1 1 1
$$13$$ $$10$$ $$I_{10}$$ Split multiplicative -1 1 10 10
$$41$$ $$1$$ $$I_{1}$$ Split multiplicative -1 1 1 1

Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ .

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

All $$p$$-adic regulators are identically $$1$$ since the rank is $$0$$.

Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 split nonsplit ss nonsplit ordinary split ordinary ordinary ordinary ordinary ordinary ordinary split ordinary ordinary 2 0 2,4 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0,0 0 0 0 0 0 0 0 0 0 0 0 0

Isogenies

This curve has no rational isogenies. Its isogeny class 22386.p consists of this curve only.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
3 3.1.6888.1 $$\Z/2\Z$$ Not in database
6 6.0.326798019072.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.