# Properties

 Label 2233.b1 Conductor $2233$ Discriminant $-20657483$ j-invariant $$-\frac{28094464000}{20657483}$$ CM no Rank $1$ Torsion structure $$\Z/{3}\Z$$

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, 1, 1, -63, 271])

gp: E = ellinit([0, 1, 1, -63, 271])

magma: E := EllipticCurve([0, 1, 1, -63, 271]);

$$y^2+y=x^3+x^2-63x+271$$

## Mordell-Weil group structure

$$\Z\times \Z/{3}\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(31, 170\right)$$ $$\hat{h}(P)$$ ≈ $2.3254693796050736365199410127$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(1, 14\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(1, 14\right)$$, $$\left(1, -15\right)$$, $$\left(31, 170\right)$$, $$\left(31, -171\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$2233$$ = $$7 \cdot 11 \cdot 29$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$-20657483$$ = $$-1 \cdot 7 \cdot 11^{2} \cdot 29^{3}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{28094464000}{20657483}$$ = $$-1 \cdot 2^{15} \cdot 5^{3} \cdot 7^{-1} \cdot 11^{-2} \cdot 19^{3} \cdot 29^{-3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $$0.10307456692168682354476685117\dots$$ Stable Faltings height: $$0.10307456692168682354476685117\dots$$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $$1$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$2.3254693796050736365199410127\dots$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$1.9850402489624489347688365829\dots$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$6$$  = $$1\cdot2\cdot3$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$3$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{3} - 2q^{4} + q^{7} - 2q^{9} - q^{11} - 2q^{12} + 2q^{13} + 4q^{16} + 6q^{17} - 7q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 336 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L'(E,1)$$ ≈ $$3.0774335441638713604895039724915633614$$

## Local data

This elliptic curve is semistable. There are 3 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$7$$ $$1$$ $$I_{1}$$ Split multiplicative -1 1 1 1
$$11$$ $$2$$ $$I_{2}$$ Non-split multiplicative 1 1 2 2
$$29$$ $$3$$ $$I_{3}$$ Split multiplicative -1 1 3 3

## Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$3$$ B.1.1

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

Note: $$p$$-adic regulator data only exists for primes $$p\ge 5$$ of good ordinary reduction.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 ss ordinary ss split nonsplit ordinary ordinary ordinary ordinary split ordinary ordinary ordinary ordinary ordinary 1,2 1 1,1 2 1 1 1 1 1 4 1 1 1 1 1 0,0 0 0,0 0 0 0 0 0 0 0 0 0 0 0 0

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 3.
Its isogeny class 2233.b consists of 2 curves linked by isogenies of degree 3.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{3}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $3$ 3.1.812.1 $$\Z/6\Z$$ Not in database $6$ 6.0.133846832.1 $$\Z/2\Z \times \Z/6\Z$$ Not in database $6$ 6.0.949132107.1 $$\Z/3\Z \times \Z/3\Z$$ Not in database $9$ 9.3.411568549814077695963.2 $$\Z/9\Z$$ Not in database $12$ Deg 12 $$\Z/12\Z$$ Not in database $18$ 18.0.102076086189180370697287646461746701709312.2 $$\Z/3\Z \times \Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.