Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+y=x^3-x^2-14257x+3034390\)
|
(homogenize, simplify) |
|
\(y^2z+yz^2=x^3-x^2z-14257xz^2+3034390z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-18477504x+141350783184\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(40, 1589)$ | $0.97801769508432854945298650904$ | $\infty$ |
| $(-92, 1886)$ | $1.0208108661574218568367116511$ | $\infty$ |
Integral points
\( \left(-92, 1886\right) \), \( \left(-92, -1887\right) \), \( \left(-70, 1919\right) \), \( \left(-70, -1920\right) \), \( \left(40, 1589\right) \), \( \left(40, -1590\right) \), \( \left(194, 2744\right) \), \( \left(194, -2745\right) \), \( \left(30092, 5219945\right) \), \( \left(30092, -5219946\right) \)
Invariants
| Conductor: | $N$ | = | \( 22253 \) | = | $7 \cdot 11 \cdot 17^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-3779721698379011$ | = | $-1 \cdot 7^{6} \cdot 11^{3} \cdot 17^{6} $ |
|
| j-invariant: | $j$ | = | \( -\frac{13278380032}{156590819} \) | = | $-1 \cdot 2^{18} \cdot 7^{-6} \cdot 11^{-3} \cdot 37^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.6709131469767587493473088742$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.25430647494865070922254156526$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0652168396120913$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.332672045368312$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.95167860595018355963270037495$ |
|
| Real period: | $\Omega$ | ≈ | $0.37566587089381747934809627258$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 12 $ = $ 2\cdot3\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $4.2901580677834782757082221331 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.290158068 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.375666 \cdot 0.951679 \cdot 12}{1^2} \\ & \approx 4.290158068\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 92160 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $7$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
| $11$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $17$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3Cs | 3.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 23562 = 2 \cdot 3^{2} \cdot 7 \cdot 11 \cdot 17 \), index $144$, genus $3$, and generators
$\left(\begin{array}{rr} 1 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 20808 \\ 0 & 20945 \end{array}\right),\left(\begin{array}{rr} 1 & 9 \\ 9 & 82 \end{array}\right),\left(\begin{array}{rr} 23545 & 18 \\ 23544 & 19 \end{array}\right),\left(\begin{array}{rr} 14995 & 20808 \\ 15759 & 22339 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 18 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 6937 & 20808 \\ 9486 & 15709 \end{array}\right),\left(\begin{array}{rr} 18017 & 0 \\ 0 & 23561 \end{array}\right)$.
The torsion field $K:=\Q(E[23562])$ is a degree-$337707624038400$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/23562\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | good | $2$ | \( 3179 = 11 \cdot 17^{2} \) |
| $3$ | good | $2$ | \( 289 = 17^{2} \) |
| $7$ | nonsplit multiplicative | $8$ | \( 3179 = 11 \cdot 17^{2} \) |
| $11$ | split multiplicative | $12$ | \( 2023 = 7 \cdot 17^{2} \) |
| $17$ | additive | $146$ | \( 77 = 7 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 22253b
consists of 3 curves linked by isogenies of
degrees dividing 9.
Twists
The minimal quadratic twist of this elliptic curve is 77b1, its twist by $17$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{17}) \) | \(\Z/3\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-51}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.1.44.1 | \(\Z/2\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-3}, \sqrt{17})\) | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $6$ | 6.0.21296.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.2.9511568.1 | \(\Z/6\Z\) | not in database |
| $6$ | 6.0.256812336.4 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $12$ | 12.0.10946861024053504.2 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.6.635915422086640752366160224633.1 | \(\Z/9\Z\) | not in database |
| $18$ | 18.0.39282839440563331261967600115701520657541879419.1 | \(\Z/9\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ss | ord | ord | nonsplit | split | ord | add | ord | ord | ord | ord | ord | ord | ord | ss |
| $\lambda$-invariant(s) | 10,11 | 2 | 2 | 2 | 3 | 2 | - | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2,2 |
| $\mu$-invariant(s) | 0,0 | 1 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.