Show commands for:
SageMath
sage: E = EllipticCurve("z1")
sage: E.isogeny_class()
Elliptic curves in class 221067z
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
221067.bb3 | 221067z1 | [1, -1, 0, -53928, 4777339] | [2] | 798720 | \(\Gamma_0(N)\)-optimal |
221067.bb2 | 221067z2 | [1, -1, 0, -102933, -5209880] | [2, 2] | 1597440 | |
221067.bb4 | 221067z3 | [1, -1, 0, 370782, -39980561] | [2] | 3194880 | |
221067.bb1 | 221067z4 | [1, -1, 0, -1360728, -610209275] | [2] | 3194880 |
Rank
sage: E.rank()
The elliptic curves in class 221067z have rank \(0\).
Complex multiplication
The elliptic curves in class 221067z do not have complex multiplication.Modular form 221067.2.a.z
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.