Show commands for:
SageMath
sage: E = EllipticCurve("h1")
sage: E.isogeny_class()
Elliptic curves in class 221067h
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
221067.m4 | 221067h1 | [1, -1, 1, -36823469, 86930004516] | [2] | 19906560 | \(\Gamma_0(N)\)-optimal |
221067.m3 | 221067h2 | [1, -1, 1, -590912114, 5528967040248] | [2, 2] | 39813120 | |
221067.m1 | 221067h3 | [1, -1, 1, -9454593479, 353846826376926] | [2] | 79626240 | |
221067.m2 | 221067h4 | [1, -1, 1, -592649069, 5494828926678] | [2] | 79626240 |
Rank
sage: E.rank()
The elliptic curves in class 221067h have rank \(1\).
Complex multiplication
The elliptic curves in class 221067h do not have complex multiplication.Modular form 221067.2.a.h
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.