Show commands for:
SageMath
sage: E = EllipticCurve("g1")
sage: E.isogeny_class()
Elliptic curves in class 221067g
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
221067.l4 | 221067g1 | [1, -1, 1, 636316, 222518926] | [2] | 5160960 | \(\Gamma_0(N)\)-optimal |
221067.l3 | 221067g2 | [1, -1, 1, -3942929, 2180604088] | [2, 2] | 10321920 | |
221067.l1 | 221067g3 | [1, -1, 1, -58104344, 170470952776] | [2] | 20643840 | |
221067.l2 | 221067g4 | [1, -1, 1, -23049434, -40847245172] | [2] | 20643840 |
Rank
sage: E.rank()
The elliptic curves in class 221067g have rank \(1\).
Complex multiplication
The elliptic curves in class 221067g do not have complex multiplication.Modular form 221067.2.a.g
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.