Show commands for:
SageMath
sage: E = EllipticCurve("z1")
sage: E.isogeny_class()
Elliptic curves in class 221067.z
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
221067.z1 | 221067y3 | [1, -1, 0, -12985803, 18014708344] | [2] | 5898240 | |
221067.z2 | 221067y2 | [1, -1, 0, -827118, 270323455] | [2, 2] | 2949120 | |
221067.z3 | 221067y1 | [1, -1, 0, -168273, -21544880] | [2] | 1474560 | \(\Gamma_0(N)\)-optimal |
221067.z4 | 221067y4 | [1, -1, 0, 790047, 1197605866] | [2] | 5898240 |
Rank
sage: E.rank()
The elliptic curves in class 221067.z have rank \(0\).
Complex multiplication
The elliptic curves in class 221067.z do not have complex multiplication.Modular form 221067.2.a.z
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.