Properties

Label 2205i
Number of curves $2$
Conductor $2205$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("i1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 2205i

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2205.f2 2205i1 \([0, 0, 1, 2058, 72630]\) \(229376/675\) \(-2836714452075\) \([]\) \(2688\) \(1.0729\) \(\Gamma_0(N)\)-optimal
2205.f1 2205i2 \([0, 0, 1, -90552, 10509777]\) \(-19539165184/46875\) \(-196994059171875\) \([3]\) \(8064\) \(1.6222\)  

Rank

sage: E.rank()
 

The elliptic curves in class 2205i have rank \(1\).

Complex multiplication

The elliptic curves in class 2205i do not have complex multiplication.

Modular form 2205.2.a.i

sage: E.q_eigenform(10)
 
\(q - 2q^{4} + q^{5} - q^{13} + 4q^{16} - 6q^{17} + 5q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.