# Properties

 Label 22050.do Number of curves $2$ Conductor $22050$ CM no Rank $0$ Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("22050.do1")

sage: E.isogeny_class()

## Elliptic curves in class 22050.do

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
22050.do1 22050eh1 [1, -1, 1, -3380, 29747] [2] 36864 $$\Gamma_0(N)$$-optimal
22050.do2 22050eh2 [1, -1, 1, 12370, 218747] [2] 73728

## Rank

sage: E.rank()

The elliptic curves in class 22050.do have rank $$0$$.

## Modular form 22050.2.a.do

sage: E.q_eigenform(10)

$$q + q^{2} + q^{4} + q^{8} - 2q^{11} - 2q^{13} + q^{16} - 4q^{17} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.