# Properties

 Label 2205.i4 Conductor $2205$ Discriminant $1286491815$ j-invariant $$\frac{56667352321}{15}$$ CM no Rank $0$ Torsion structure $$\Z/{2}\Z$$

# Learn more

Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, -1, 0, -35289, 2560410])

gp: E = ellinit([1, -1, 0, -35289, 2560410])

magma: E := EllipticCurve([1, -1, 0, -35289, 2560410]);

$$y^2+xy=x^3-x^2-35289x+2560410$$

## Mordell-Weil group structure

$\Z/{2}\Z$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(\frac{435}{4}, -\frac{435}{8}\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

None

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$2205$$ = $3^{2} \cdot 5 \cdot 7^{2}$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $1286491815$ = $3^{7} \cdot 5 \cdot 7^{6}$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{56667352321}{15}$$ = $3^{-1} \cdot 5^{-1} \cdot 23^{3} \cdot 167^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $1.1199836467788677108067024930\dots$ Stable Faltings height: $-0.40227757208284378744359649718\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $0$ sage: E.regulator()  magma: Regulator(E); Regulator: $1$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $1.2225465638237309555068865801\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $8$  = $2\cdot1\cdot2^{2}$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $2$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L(E,1)$ ≈ $2.4450931276474619110137731602636940431$

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{2} - q^{4} + q^{5} - 3q^{8} + q^{10} + 4q^{11} + 2q^{13} - q^{16} + 2q^{17} - 4q^{19} + O(q^{20})$$

For more coefficients, see the Downloads section to the right.

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 3072 $\Gamma_0(N)$-optimal: no Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 3 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$3$ $2$ $I_1^{*}$ Additive -1 2 7 1
$5$ $1$ $I_{1}$ Split multiplicative -1 1 1 1
$7$ $4$ $I_0^{*}$ Additive -1 2 6 0

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image $\GL(2,\Z_\ell)$ for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 32.48.0.1

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

All $p$-adic regulators are identically $1$ since the rank is $0$.

## Iwasawa invariants

$p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 ordinary add split add 5 - 1 - 0 - 0 -

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2, 4, 8 and 16.
Its isogeny class 2205.i consists of 5 curves linked by isogenies of degrees dividing 16.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{15})$$ $$\Z/2\Z \times \Z/2\Z$$ Not in database $2$ $$\Q(\sqrt{21})$$ $$\Z/4\Z$$ 2.2.21.1-75.1-a7 $2$ $$\Q(\sqrt{35})$$ $$\Z/4\Z$$ Not in database $4$ $$\Q(\sqrt{15}, \sqrt{21})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database $4$ $$\Q(\sqrt{5}, \sqrt{21})$$ $$\Z/8\Z$$ Not in database $4$ $$\Q(\sqrt{3}, \sqrt{7})$$ $$\Z/8\Z$$ Not in database $8$ 8.8.3038765625.1 $$\Z/16\Z$$ Not in database $8$ 8.0.1792336896000000.42 $$\Z/2\Z \times \Z/4\Z$$ Not in database $8$ 8.0.1792336896000000.106 $$\Z/8\Z$$ Not in database $8$ 8.8.31116960000.1 $$\Z/2\Z \times \Z/8\Z$$ Not in database $8$ 8.8.777924000000.2 $$\Z/16\Z$$ Not in database $8$ 8.2.265831216875.3 $$\Z/6\Z$$ Not in database $16$ Deg 16 $$\Z/4\Z \times \Z/4\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/8\Z$$ Not in database $16$ Deg 16 $$\Z/16\Z$$ Not in database $16$ 16.16.605165749776000000000000.1 $$\Z/2\Z \times \Z/16\Z$$ Not in database $16$ Deg 16 $$\Z/32\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/6\Z$$ Not in database $16$ Deg 16 $$\Z/12\Z$$ Not in database $16$ Deg 16 $$\Z/12\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.