Properties

Label 2205.g
Number of curves $2$
Conductor $2205$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("g1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 2205.g

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2205.g1 2205a2 \([1, -1, 0, -1500, -15625]\) \(55306341/15625\) \(105488578125\) \([2]\) \(2304\) \(0.82203\)  
2205.g2 2205a1 \([1, -1, 0, -555, 4976]\) \(2803221/125\) \(843908625\) \([2]\) \(1152\) \(0.47545\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 2205.g have rank \(0\).

Complex multiplication

The elliptic curves in class 2205.g do not have complex multiplication.

Modular form 2205.2.a.g

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{4} - q^{5} - 3q^{8} - q^{10} - 2q^{11} - 6q^{13} - q^{16} + 6q^{17} + 6q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.