Properties

Label 2200.g
Number of curves $2$
Conductor $2200$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("g1")
 
E.isogeny_class()
 

Elliptic curves in class 2200.g

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2200.g1 2200a2 \([0, 0, 0, -575, -4750]\) \(5256144/605\) \(2420000000\) \([2]\) \(768\) \(0.53265\)  
2200.g2 2200a1 \([0, 0, 0, 50, -375]\) \(55296/275\) \(-68750000\) \([2]\) \(384\) \(0.18608\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 2200.g have rank \(0\).

Complex multiplication

The elliptic curves in class 2200.g do not have complex multiplication.

Modular form 2200.2.a.g

sage: E.q_eigenform(10)
 
\(q + 2 q^{7} - 3 q^{9} + q^{11} + 4 q^{13} + 4 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.