Show commands: SageMath
Rank
The elliptic curves in class 21840cg have rank \(1\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 21840cg do not have complex multiplication.Modular form 21840.2.a.cg
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 2 & 2 \\ 4 & 2 & 4 & 1 & 8 & 8 \\ 8 & 4 & 2 & 8 & 1 & 4 \\ 8 & 4 & 2 & 8 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 21840cg
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 21840.cc5 | 21840cg1 | \([0, 1, 0, -5920, -2764300]\) | \(-5602762882081/801531494400\) | \(-3283073001062400\) | \([2]\) | \(147456\) | \(1.6567\) | \(\Gamma_0(N)\)-optimal |
| 21840.cc4 | 21840cg2 | \([0, 1, 0, -333600, -73674252]\) | \(1002404925316922401/9348917760000\) | \(38293167144960000\) | \([2, 2]\) | \(294912\) | \(2.0033\) | |
| 21840.cc3 | 21840cg3 | \([0, 1, 0, -584480, 51866100]\) | \(5391051390768345121/2833965225000000\) | \(11607921561600000000\) | \([2, 4]\) | \(589824\) | \(2.3498\) | |
| 21840.cc2 | 21840cg4 | \([0, 1, 0, -5325600, -4732208652]\) | \(4078208988807294650401/359723582400\) | \(1473427793510400\) | \([2]\) | \(589824\) | \(2.3498\) | |
| 21840.cc6 | 21840cg5 | \([0, 1, 0, 2215520, 406906100]\) | \(293623352309352854879/187320324116835000\) | \(-767264047582556160000\) | \([8]\) | \(1179648\) | \(2.6964\) | |
| 21840.cc1 | 21840cg6 | \([0, 1, 0, -7398560, 7735422708]\) | \(10934663514379917006241/12996826171875000\) | \(53235000000000000000\) | \([4]\) | \(1179648\) | \(2.6964\) |