Show commands: SageMath
Rank
The elliptic curves in class 21840.p have rank \(1\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 21840.p do not have complex multiplication.Modular form 21840.2.a.p
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 21840.p
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 21840.p1 | 21840bi4 | \([0, -1, 0, -69896, 7135920]\) | \(9219915604149769/511875\) | \(2096640000\) | \([2]\) | \(65536\) | \(1.2566\) | |
| 21840.p2 | 21840bi2 | \([0, -1, 0, -4376, 112176]\) | \(2263054145689/16769025\) | \(68685926400\) | \([2, 2]\) | \(32768\) | \(0.91005\) | |
| 21840.p3 | 21840bi3 | \([0, -1, 0, -1576, 251056]\) | \(-105756712489/6558605235\) | \(-26864047042560\) | \([2]\) | \(65536\) | \(1.2566\) | |
| 21840.p4 | 21840bi1 | \([0, -1, 0, -456, -720]\) | \(2565726409/1404585\) | \(5753180160\) | \([2]\) | \(16384\) | \(0.56348\) | \(\Gamma_0(N)\)-optimal |