Properties

Label 21840.p
Number of curves $4$
Conductor $21840$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 21840.p have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(7\)\(1 - T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 21840.p do not have complex multiplication.

Modular form 21840.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + q^{7} + q^{9} - 4 q^{11} - q^{13} + q^{15} + 6 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 21840.p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
21840.p1 21840bi4 \([0, -1, 0, -69896, 7135920]\) \(9219915604149769/511875\) \(2096640000\) \([2]\) \(65536\) \(1.2566\)  
21840.p2 21840bi2 \([0, -1, 0, -4376, 112176]\) \(2263054145689/16769025\) \(68685926400\) \([2, 2]\) \(32768\) \(0.91005\)  
21840.p3 21840bi3 \([0, -1, 0, -1576, 251056]\) \(-105756712489/6558605235\) \(-26864047042560\) \([2]\) \(65536\) \(1.2566\)  
21840.p4 21840bi1 \([0, -1, 0, -456, -720]\) \(2565726409/1404585\) \(5753180160\) \([2]\) \(16384\) \(0.56348\) \(\Gamma_0(N)\)-optimal