Show commands for:
SageMath
sage: E = EllipticCurve("ch1")
sage: E.isogeny_class()
Elliptic curves in class 218010.ch
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
218010.ch1 | 218010b3 | [1, 0, 0, -141710, 20381022] | [2] | 1769472 | |
218010.ch2 | 218010b2 | [1, 0, 0, -14960, -177828] | [2, 2] | 884736 | |
218010.ch3 | 218010b1 | [1, 0, 0, -11580, -480000] | [2] | 442368 | \(\Gamma_0(N)\)-optimal |
218010.ch4 | 218010b4 | [1, 0, 0, 57710, -1384150] | [2] | 1769472 |
Rank
sage: E.rank()
The elliptic curves in class 218010.ch have rank \(0\).
Complex multiplication
The elliptic curves in class 218010.ch do not have complex multiplication.Modular form 218010.2.a.ch
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.