Show commands:
SageMath
E = EllipticCurve("i1")
E.isogeny_class()
Elliptic curves in class 2175.i
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
2175.i1 | 2175i2 | \([1, 0, 1, -6076, 181673]\) | \(12698260037/7569\) | \(14783203125\) | \([2]\) | \(1920\) | \(0.89557\) | |
2175.i2 | 2175i1 | \([1, 0, 1, -451, 1673]\) | \(5177717/2349\) | \(4587890625\) | \([2]\) | \(960\) | \(0.54899\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 2175.i have rank \(0\).
Complex multiplication
The elliptic curves in class 2175.i do not have complex multiplication.Modular form 2175.2.a.i
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.