Properties

Label 2175.h
Number of curves $4$
Conductor $2175$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("h1")
 
E.isogeny_class()
 

Elliptic curves in class 2175.h

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2175.h1 2175b3 \([1, 1, 0, -174000, -28009125]\) \(37286818682653441/1305\) \(20390625\) \([2]\) \(7680\) \(1.3488\)  
2175.h2 2175b2 \([1, 1, 0, -10875, -441000]\) \(9104453457841/1703025\) \(26609765625\) \([2, 2]\) \(3840\) \(1.0023\)  
2175.h3 2175b4 \([1, 1, 0, -9750, -534375]\) \(-6561258219361/3978455625\) \(-62163369140625\) \([2]\) \(7680\) \(1.3488\)  
2175.h4 2175b1 \([1, 1, 0, -750, -5625]\) \(2992209121/951345\) \(14864765625\) \([2]\) \(1920\) \(0.65569\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 2175.h have rank \(0\).

Complex multiplication

The elliptic curves in class 2175.h do not have complex multiplication.

Modular form 2175.2.a.h

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{3} - q^{4} - q^{6} + 4 q^{7} - 3 q^{8} + q^{9} + q^{12} - 6 q^{13} + 4 q^{14} - q^{16} - 2 q^{17} + q^{18} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.