Properties

Label 2175.a
Number of curves $2$
Conductor $2175$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 2175.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2175.a1 2175j1 \([0, 1, 1, -698, -7336]\) \(-301302001664/87\) \(-10875\) \([]\) \(912\) \(0.14130\) \(\Gamma_0(N)\)-optimal
2175.a2 2175j2 \([0, 1, 1, 1152, -34486]\) \(1351431663616/4984209207\) \(-623026150875\) \([5]\) \(4560\) \(0.94602\)  

Rank

sage: E.rank()
 

The elliptic curves in class 2175.a have rank \(0\).

Complex multiplication

The elliptic curves in class 2175.a do not have complex multiplication.

Modular form 2175.2.a.a

sage: E.q_eigenform(10)
 
\(q - 2 q^{2} + q^{3} + 2 q^{4} - 2 q^{6} - 2 q^{7} + q^{9} - 3 q^{11} + 2 q^{12} + 4 q^{13} + 4 q^{14} - 4 q^{16} + 8 q^{17} - 2 q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.