Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 2175.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
2175.a1 | 2175j1 | \([0, 1, 1, -698, -7336]\) | \(-301302001664/87\) | \(-10875\) | \([]\) | \(912\) | \(0.14130\) | \(\Gamma_0(N)\)-optimal |
2175.a2 | 2175j2 | \([0, 1, 1, 1152, -34486]\) | \(1351431663616/4984209207\) | \(-623026150875\) | \([5]\) | \(4560\) | \(0.94602\) |
Rank
sage: E.rank()
The elliptic curves in class 2175.a have rank \(0\).
Complex multiplication
The elliptic curves in class 2175.a do not have complex multiplication.Modular form 2175.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.