Learn more

Refine search


Results (46 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
21675.a1 21675.a \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $4.642942320$ $[0, -1, 1, -60208, -5808432]$ \(y^2+y=x^3-x^2-60208x-5808432\) 5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 85.24.0.?, 510.48.1.? $[(1197/2, 13579/2)]$
21675.a2 21675.a \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.928588464$ $[0, -1, 1, 482, 17808]$ \(y^2+y=x^3-x^2+482x+17808\) 5.12.0.a.1, 6.2.0.a.1, 30.24.1.d.1, 85.24.0.?, 510.48.1.? $[(6, 144)]$
21675.b1 21675.b \( 3 \cdot 5^{2} \cdot 17^{2} \) $2$ $\mathsf{trivial}$ $0.413040733$ $[0, -1, 1, -28, -42]$ \(y^2+y=x^3-x^2-28x-42\) 10.2.0.a.1 $[(-3, 2), (-2, 1)]$
21675.c1 21675.c \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $6.400694149$ $[0, -1, 1, -21108, -1173382]$ \(y^2+y=x^3-x^2-21108x-1173382\) 5.6.0.a.1, 30.12.0.a.1, 85.24.0.?, 102.2.0.?, 510.48.1.? $[(2149/2, 95417/2)]$
21675.c2 21675.c \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $1.280138829$ $[0, -1, 1, 142, -382]$ \(y^2+y=x^3-x^2+142x-382\) 5.6.0.a.1, 30.12.0.a.2, 85.24.0.?, 102.2.0.?, 510.48.1.? $[(6, 25)]$
21675.d1 21675.d \( 3 \cdot 5^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -6100308, -5801426206]$ \(y^2+y=x^3+x^2-6100308x-5801426206\) 5.6.0.a.1, 30.12.0.a.1, 85.24.0.?, 102.2.0.?, 510.48.1.? $[ ]$
21675.d2 21675.d \( 3 \cdot 5^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, 40942, -1629706]$ \(y^2+y=x^3+x^2+40942x-1629706\) 5.6.0.a.1, 30.12.0.a.2, 85.24.0.?, 102.2.0.?, 510.48.1.? $[ ]$
21675.e1 21675.e \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $5.597716921$ $[0, 1, 1, -782708, -347042506]$ \(y^2+y=x^3+x^2-782708x-347042506\) 6.2.0.a.1 $[(9004, 850093)]$
21675.f1 21675.f \( 3 \cdot 5^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -8188, -254066]$ \(y^2+y=x^3+x^2-8188x-254066\) 10.2.0.a.1 $[ ]$
21675.g1 21675.g \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $11.00977328$ $[1, 1, 1, -252303, 9007266]$ \(y^2+xy+y=x^3+x^2-252303x+9007266\) 12.2.0.a.1 $[(-42104/9, 35065/9)]$
21675.h1 21675.h \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $0.478542819$ $[1, 0, 0, -123698, -16544913]$ \(y^2+xy=x^3-123698x-16544913\) 2.3.0.a.1, 60.6.0.c.1, 170.6.0.?, 204.6.0.?, 1020.12.0.? $[(-197, 532)]$
21675.h2 21675.h \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $0.957085638$ $[1, 0, 0, -873, -700488]$ \(y^2+xy=x^3-873x-700488\) 2.3.0.a.1, 30.6.0.a.1, 204.6.0.?, 340.6.0.?, 1020.12.0.? $[(177, 2079)]$
21675.i1 21675.i \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.149598959$ $[1, 0, 0, -873, 1782]$ \(y^2+xy=x^3-873x+1782\) 12.2.0.a.1 $[(-27, 90)]$
21675.j1 21675.j \( 3 \cdot 5^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -5963033, -5602625782]$ \(y^2+y=x^3-x^2-5963033x-5602625782\) 3.4.0.a.1, 6.8.0-3.a.1.2, 10.2.0.a.1, 15.8.0-3.a.1.1, 30.16.0-30.a.1.2 $[ ]$
21675.j2 21675.j \( 3 \cdot 5^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -110783, 903593]$ \(y^2+y=x^3-x^2-110783x+903593\) 3.4.0.a.1, 6.8.0-3.a.1.1, 10.2.0.a.1, 15.8.0-3.a.1.2, 30.16.0-30.a.1.3 $[ ]$
21675.k1 21675.k \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $6.481079078$ $[0, -1, 1, 120417, 14602193]$ \(y^2+y=x^3-x^2+120417x+14602193\) 6.2.0.a.1 $[(1289/5, 572013/5)]$
21675.l1 21675.l \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.271114292$ $[0, -1, 1, -1133, 14918]$ \(y^2+y=x^3-x^2-1133x+14918\) 10.2.0.a.1 $[(2, 112)]$
21675.m1 21675.m \( 3 \cdot 5^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -428683, -108234581]$ \(y^2+y=x^3+x^2-428683x-108234581\) 3.4.0.a.1, 30.8.0-3.a.1.1, 102.8.0.?, 255.8.0.?, 510.16.0.? $[ ]$
21675.m2 21675.m \( 3 \cdot 5^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, 4817, -618206]$ \(y^2+y=x^3+x^2+4817x-618206\) 3.4.0.a.1, 30.8.0-3.a.1.2, 102.8.0.?, 255.8.0.?, 510.16.0.? $[ ]$
21675.n1 21675.n \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.559903071$ $[0, 1, 1, -327533, 71328344]$ \(y^2+y=x^3+x^2-327533x+71328344\) 10.2.0.a.1 $[(-482, 10837)]$
21675.o1 21675.o \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $5.604647124$ $[0, 1, 1, 4817, 118744]$ \(y^2+y=x^3+x^2+4817x+118744\) 6.2.0.a.1 $[(1066/7, 165859/7)]$
21675.p1 21675.p \( 3 \cdot 5^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -1723316633, -27536040365356]$ \(y^2+y=x^3+x^2-1723316633x-27536040365356\) 3.4.0.a.1, 10.2.0.a.1, 30.8.0.a.1, 102.8.0.?, 255.8.0.?, $\ldots$ $[ ]$
21675.p2 21675.p \( 3 \cdot 5^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -32016383, 4247255519]$ \(y^2+y=x^3+x^2-32016383x+4247255519\) 3.4.0.a.1, 10.2.0.a.1, 30.8.0.a.1, 102.8.0.?, 255.8.0.?, $\ldots$ $[ ]$
21675.q1 21675.q \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $5.129408448$ $[1, 1, 0, -166325, 18213000]$ \(y^2+xy=x^3+x^2-166325x+18213000\) 2.3.0.a.1, 4.12.0.f.1, 8.24.0.bh.1, 34.6.0.a.1, 48.48.1.gv.1, $\ldots$ $[(-136, 6260)]$
21675.q2 21675.q \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $10.25881689$ $[1, 1, 0, 447800, 122000125]$ \(y^2+xy=x^3+x^2+447800x+122000125\) 2.3.0.a.1, 4.6.0.e.1, 8.24.0.bj.1, 48.48.1.gx.1, 68.12.0.l.1, $\ldots$ $[(88009/16, 72191635/16)]$
21675.r1 21675.r \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $2.842496869$ $[1, 1, 0, -21825, 222750]$ \(y^2+xy=x^3+x^2-21825x+222750\) 12.2.0.a.1 $[(10, 70)]$
21675.s1 21675.s \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $36.36573288$ $[1, 1, 0, -15606150, -23736178125]$ \(y^2+xy=x^3+x^2-15606150x-23736178125\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 10.6.0.a.1, 16.48.0.x.2, $\ldots$ $[(368050235868089125/8380596, 113831594231720597919561125/8380596)]$
21675.s2 21675.s \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $18.18286644$ $[1, 1, 0, -975525, -371070000]$ \(y^2+xy=x^3+x^2-975525x-371070000\) 2.6.0.a.1, 4.12.0.b.1, 8.48.0.k.1, 20.24.0.c.1, 40.96.1.cc.2, $\ldots$ $[(-2113517001/1930, -968004770853/1930)]$
21675.s3 21675.s \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $36.36573288$ $[1, 1, 0, -794900, -512499375]$ \(y^2+xy=x^3+x^2-794900x-512499375\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.ba.2, 16.48.0.u.2, 20.12.0.h.1, $\ldots$ $[(409264570028551525/14142156, 223997178235413405925164425/14142156)]$
21675.s4 21675.s \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $2.272858305$ $[1, 1, 0, -578150, 168962625]$ \(y^2+xy=x^3+x^2-578150x+168962625\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 24.24.0.by.2, $\ldots$ $[(1480, 49835)]$
21675.s5 21675.s \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $9.091433220$ $[1, 1, 0, -72400, -3498125]$ \(y^2+xy=x^3+x^2-72400x-3498125\) 2.6.0.a.1, 4.24.0.b.1, 8.48.0.b.2, 24.96.1.n.1, 40.96.1.s.1, $\ldots$ $[(-8249/10, 1427371/10)]$
21675.s6 21675.s \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.545716610$ $[1, 1, 0, -36275, 2607000]$ \(y^2+xy=x^3+x^2-36275x+2607000\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.i.1, 16.48.0.d.2, 24.48.0.bb.2, $\ldots$ $[(-145/2, 15895/2)]$
21675.s7 21675.s \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $2.272858305$ $[1, 1, 0, -150, 114375]$ \(y^2+xy=x^3+x^2-150x+114375\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 24.24.0.bz.1, $\ldots$ $[(910/3, 27535/3)]$
21675.s8 21675.s \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $4.545716610$ $[1, 1, 0, 252725, -25931750]$ \(y^2+xy=x^3+x^2+252725x-25931750\) 2.3.0.a.1, 4.12.0.d.1, 8.48.0.n.2, 24.96.1.cv.2, 80.96.1.?, $\ldots$ $[(7770, 682490)]$
21675.t1 21675.t \( 3 \cdot 5^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -3092450, -2068114125]$ \(y^2+xy=x^3+x^2-3092450x-2068114125\) 2.3.0.a.1, 60.6.0.c.1, 170.6.0.?, 204.6.0.?, 1020.12.0.? $[ ]$
21675.t2 21675.t \( 3 \cdot 5^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -21825, -87561000]$ \(y^2+xy=x^3+x^2-21825x-87561000\) 2.3.0.a.1, 30.6.0.a.1, 204.6.0.?, 340.6.0.?, 1020.12.0.? $[ ]$
21675.u1 21675.u \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $8.643711099$ $[1, 0, 1, -6307576, 1138523423]$ \(y^2+xy+y=x^3-6307576x+1138523423\) 12.2.0.a.1 $[(-1319/5, 4797706/5)]$
21675.v1 21675.v \( 3 \cdot 5^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -576, 3673]$ \(y^2+xy+y=x^3-576x+3673\) 2.3.0.a.1, 4.12.0.f.1, 8.24.0.bh.1, 34.6.0.a.1, 48.48.1.gv.1, $\ldots$ $[ ]$
21675.v2 21675.v \( 3 \cdot 5^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 1549, 24923]$ \(y^2+xy+y=x^3+1549x+24923\) 2.3.0.a.1, 4.6.0.e.1, 8.24.0.bj.1, 48.48.1.gx.1, 68.12.0.l.1, $\ldots$ $[ ]$
21675.w1 21675.w \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $2.916904231$ $[0, -1, 1, -204708, -31348807]$ \(y^2+y=x^3-x^2-204708x-31348807\) 10.2.0.a.1 $[(-1251/2, 11267/2)]$
21675.x1 21675.x \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $26.41744306$ $[0, -1, 1, -31308, -2763817]$ \(y^2+y=x^3-x^2-31308x-2763817\) 6.2.0.a.1 $[(4447870511309/74998, 9109452556442571045/74998)]$
21675.y1 21675.y \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $2.820645938$ $[0, -1, 1, -16008, -106207]$ \(y^2+y=x^3-x^2-16008x-106207\) 10.2.0.a.1 $[(7053/2, 590621/2)]$
21675.z1 21675.z \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $2.753093758$ $[0, 1, 1, -4626408, -549552031]$ \(y^2+y=x^3+x^2-4626408x-549552031\) 10.2.0.a.1 $[(-483/2, 21671/2)]$
21675.ba1 21675.ba \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $3.347218718$ $[0, 1, 1, -708, -6631]$ \(y^2+y=x^3+x^2-708x-6631\) 10.2.0.a.1 $[(-247/4, 1843/4)]$
21675.bb1 21675.bb \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $6.433596029$ $[0, 1, 1, -2408, -47431]$ \(y^2+y=x^3+x^2-2408x-47431\) 5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 85.24.0.?, 510.48.1.? $[(25293/14, 3687713/14)]$
21675.bb2 21675.bb \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $1.286719205$ $[0, 1, 1, 12042, 2250119]$ \(y^2+y=x^3+x^2+12042x+2250119\) 5.12.0.a.1, 6.2.0.a.1, 30.24.1.d.1, 85.24.0.?, 510.48.1.? $[(1557/2, 65021/2)]$
  displayed columns for results