Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
21675.a1 |
21675i2 |
21675.a |
21675i |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 3 \cdot 5^{10} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$510$ |
$48$ |
$1$ |
$4.642942320$ |
$1$ |
|
$0$ |
$153600$ |
$1.628227$ |
$-102400/3$ |
$1.04391$ |
$4.47517$ |
$[0, -1, 1, -60208, -5808432]$ |
\(y^2+y=x^3-x^2-60208x-5808432\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 85.24.0.?, 510.48.1.? |
$[(1197/2, 13579/2)]$ |
21675.a2 |
21675i1 |
21675.a |
21675i |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 3^{5} \cdot 5^{2} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$510$ |
$48$ |
$1$ |
$0.928588464$ |
$1$ |
|
$4$ |
$30720$ |
$0.823508$ |
$20480/243$ |
$1.13104$ |
$3.31693$ |
$[0, -1, 1, 482, 17808]$ |
\(y^2+y=x^3-x^2+482x+17808\) |
5.12.0.a.1, 6.2.0.a.1, 30.24.1.d.1, 85.24.0.?, 510.48.1.? |
$[(6, 144)]$ |
21675.b1 |
21675l1 |
21675.b |
21675l |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{2} \cdot 5^{3} \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$0.413040733$ |
$1$ |
|
$18$ |
$4032$ |
$-0.213736$ |
$69632/9$ |
$0.79461$ |
$2.16806$ |
$[0, -1, 1, -28, -42]$ |
\(y^2+y=x^3-x^2-28x-42\) |
10.2.0.a.1 |
$[(-3, 2), (-2, 1)]$ |
21675.c1 |
21675h2 |
21675.c |
21675h |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 3^{5} \cdot 5^{6} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.6.0.1 |
5B |
$510$ |
$48$ |
$1$ |
$6.400694149$ |
$1$ |
|
$0$ |
$51840$ |
$1.097593$ |
$-13549359104/243$ |
$1.07715$ |
$4.15527$ |
$[0, -1, 1, -21108, -1173382]$ |
\(y^2+y=x^3-x^2-21108x-1173382\) |
5.6.0.a.1, 30.12.0.a.1, 85.24.0.?, 102.2.0.?, 510.48.1.? |
$[(2149/2, 95417/2)]$ |
21675.c2 |
21675h1 |
21675.c |
21675h |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 3 \cdot 5^{6} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.6.0.1 |
5B |
$510$ |
$48$ |
$1$ |
$1.280138829$ |
$1$ |
|
$2$ |
$10368$ |
$0.292875$ |
$4096/3$ |
$0.95016$ |
$2.65167$ |
$[0, -1, 1, 142, -382]$ |
\(y^2+y=x^3-x^2+142x-382\) |
5.6.0.a.1, 30.12.0.a.2, 85.24.0.?, 102.2.0.?, 510.48.1.? |
$[(6, 25)]$ |
21675.d1 |
21675r2 |
21675.d |
21675r |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 3^{5} \cdot 5^{6} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.6.0.1 |
5B |
$510$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$881280$ |
$2.514198$ |
$-13549359104/243$ |
$1.07715$ |
$5.85794$ |
$[0, 1, 1, -6100308, -5801426206]$ |
\(y^2+y=x^3+x^2-6100308x-5801426206\) |
5.6.0.a.1, 30.12.0.a.1, 85.24.0.?, 102.2.0.?, 510.48.1.? |
$[ ]$ |
21675.d2 |
21675r1 |
21675.d |
21675r |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 3 \cdot 5^{6} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.6.0.1 |
5B |
$510$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$176256$ |
$1.709482$ |
$4096/3$ |
$0.95016$ |
$4.35434$ |
$[0, 1, 1, 40942, -1629706]$ |
\(y^2+y=x^3+x^2+40942x-1629706\) |
5.6.0.a.1, 30.12.0.a.2, 85.24.0.?, 102.2.0.?, 510.48.1.? |
$[ ]$ |
21675.e1 |
21675ba1 |
21675.e |
21675ba |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 3^{3} \cdot 5^{8} \cdot 17^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$5.597716921$ |
$1$ |
|
$2$ |
$829440$ |
$2.417351$ |
$-5624320000/2255067$ |
$1.03348$ |
$5.29367$ |
$[0, 1, 1, -782708, -347042506]$ |
\(y^2+y=x^3+x^2-782708x-347042506\) |
6.2.0.a.1 |
$[(9004, 850093)]$ |
21675.f1 |
21675bb1 |
21675.f |
21675bb |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{2} \cdot 5^{3} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$68544$ |
$1.202871$ |
$69632/9$ |
$0.79461$ |
$3.87073$ |
$[0, 1, 1, -8188, -254066]$ |
\(y^2+y=x^3+x^2-8188x-254066\) |
10.2.0.a.1 |
$[ ]$ |
21675.g1 |
21675e1 |
21675.g |
21675e |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{9} \cdot 5^{2} \cdot 17^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$11.00977328$ |
$1$ |
|
$0$ |
$231336$ |
$2.143482$ |
$35242105/19683$ |
$1.04604$ |
$4.90076$ |
$[1, 1, 1, -252303, 9007266]$ |
\(y^2+xy+y=x^3+x^2-252303x+9007266\) |
12.2.0.a.1 |
$[(-42104/9, 35065/9)]$ |
21675.h1 |
21675x2 |
21675.h |
21675x |
$2$ |
$2$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{10} \cdot 5^{3} \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1020$ |
$12$ |
$0$ |
$0.478542819$ |
$1$ |
|
$8$ |
$184320$ |
$1.774446$ |
$69375867029/1003833$ |
$0.95207$ |
$4.68658$ |
$[1, 0, 0, -123698, -16544913]$ |
\(y^2+xy=x^3-123698x-16544913\) |
2.3.0.a.1, 60.6.0.c.1, 170.6.0.?, 204.6.0.?, 1020.12.0.? |
$[(-197, 532)]$ |
21675.h2 |
21675x1 |
21675.h |
21675x |
$2$ |
$2$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 3^{5} \cdot 5^{3} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1020$ |
$12$ |
$0$ |
$0.957085638$ |
$1$ |
|
$7$ |
$92160$ |
$1.427872$ |
$-24389/70227$ |
$1.02818$ |
$4.05072$ |
$[1, 0, 0, -873, -700488]$ |
\(y^2+xy=x^3-873x-700488\) |
2.3.0.a.1, 30.6.0.a.1, 204.6.0.?, 340.6.0.?, 1020.12.0.? |
$[(177, 2079)]$ |
21675.i1 |
21675t1 |
21675.i |
21675t |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{9} \cdot 5^{2} \cdot 17^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$0.149598959$ |
$1$ |
|
$6$ |
$13608$ |
$0.726875$ |
$35242105/19683$ |
$1.04604$ |
$3.19809$ |
$[1, 0, 0, -873, 1782]$ |
\(y^2+xy=x^3-873x+1782\) |
12.2.0.a.1 |
$[(-27, 90)]$ |
21675.j1 |
21675j2 |
21675.j |
21675j |
$2$ |
$3$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{4} \cdot 5^{15} \cdot 17^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$30$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$497664$ |
$2.488953$ |
$17968412610002944/158203125$ |
$1.13557$ |
$5.85110$ |
$[0, -1, 1, -5963033, -5602625782]$ |
\(y^2+y=x^3-x^2-5963033x-5602625782\) |
3.4.0.a.1, 6.8.0-3.a.1.2, 10.2.0.a.1, 15.8.0-3.a.1.1, 30.16.0-30.a.1.2 |
$[ ]$ |
21675.j2 |
21675j1 |
21675.j |
21675j |
$2$ |
$3$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{12} \cdot 5^{9} \cdot 17^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$30$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$165888$ |
$1.939646$ |
$115220905984/66430125$ |
$1.23689$ |
$4.65344$ |
$[0, -1, 1, -110783, 903593]$ |
\(y^2+y=x^3-x^2-110783x+903593\) |
3.4.0.a.1, 6.8.0-3.a.1.1, 10.2.0.a.1, 15.8.0-3.a.1.2, 30.16.0-30.a.1.3 |
$[ ]$ |
21675.k1 |
21675a1 |
21675.k |
21675a |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 3 \cdot 5^{10} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$6.481079078$ |
$1$ |
|
$0$ |
$138240$ |
$2.008251$ |
$819200/867$ |
$0.92564$ |
$4.67850$ |
$[0, -1, 1, 120417, 14602193]$ |
\(y^2+y=x^3-x^2+120417x+14602193\) |
6.2.0.a.1 |
$[(1289/5, 572013/5)]$ |
21675.l1 |
21675b1 |
21675.l |
21675b |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{4} \cdot 5^{7} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$0.271114292$ |
$1$ |
|
$6$ |
$13824$ |
$0.590612$ |
$35651584/405$ |
$1.03043$ |
$3.27651$ |
$[0, -1, 1, -1133, 14918]$ |
\(y^2+y=x^3-x^2-1133x+14918\) |
10.2.0.a.1 |
$[(2, 112)]$ |
21675.m1 |
21675p2 |
21675.m |
21675p |
$2$ |
$3$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 3 \cdot 5^{6} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$510$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$186624$ |
$1.962103$ |
$-23100424192/14739$ |
$1.03897$ |
$5.06015$ |
$[0, 1, 1, -428683, -108234581]$ |
\(y^2+y=x^3+x^2-428683x-108234581\) |
3.4.0.a.1, 30.8.0-3.a.1.1, 102.8.0.?, 255.8.0.?, 510.16.0.? |
$[ ]$ |
21675.m2 |
21675p1 |
21675.m |
21675p |
$2$ |
$3$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 3^{3} \cdot 5^{6} \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$510$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$62208$ |
$1.412796$ |
$32768/459$ |
$1.01165$ |
$4.02622$ |
$[0, 1, 1, 4817, -618206]$ |
\(y^2+y=x^3+x^2+4817x-618206\) |
3.4.0.a.1, 30.8.0-3.a.1.2, 102.8.0.?, 255.8.0.?, 510.16.0.? |
$[ ]$ |
21675.n1 |
21675s1 |
21675.n |
21675s |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{4} \cdot 5^{7} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$0.559903071$ |
$1$ |
|
$4$ |
$235008$ |
$2.007217$ |
$35651584/405$ |
$1.03043$ |
$4.97917$ |
$[0, 1, 1, -327533, 71328344]$ |
\(y^2+y=x^3+x^2-327533x+71328344\) |
10.2.0.a.1 |
$[(-482, 10837)]$ |
21675.o1 |
21675v1 |
21675.o |
21675v |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 3 \cdot 5^{4} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$5.604647124$ |
$1$ |
|
$0$ |
$27648$ |
$1.203533$ |
$819200/867$ |
$0.92564$ |
$3.71128$ |
$[0, 1, 1, 4817, 118744]$ |
\(y^2+y=x^3+x^2+4817x+118744\) |
6.2.0.a.1 |
$[(1066/7, 165859/7)]$ |
21675.p1 |
21675o2 |
21675.p |
21675o |
$2$ |
$3$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{4} \cdot 5^{15} \cdot 17^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$510$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$8460288$ |
$3.905560$ |
$17968412610002944/158203125$ |
$1.13557$ |
$7.55377$ |
$[0, 1, 1, -1723316633, -27536040365356]$ |
\(y^2+y=x^3+x^2-1723316633x-27536040365356\) |
3.4.0.a.1, 10.2.0.a.1, 30.8.0.a.1, 102.8.0.?, 255.8.0.?, $\ldots$ |
$[ ]$ |
21675.p2 |
21675o1 |
21675.p |
21675o |
$2$ |
$3$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{12} \cdot 5^{9} \cdot 17^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$510$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2820096$ |
$3.356255$ |
$115220905984/66430125$ |
$1.23689$ |
$6.35611$ |
$[0, 1, 1, -32016383, 4247255519]$ |
\(y^2+y=x^3+x^2-32016383x+4247255519\) |
3.4.0.a.1, 10.2.0.a.1, 30.8.0.a.1, 102.8.0.?, 255.8.0.?, $\ldots$ |
$[ ]$ |
21675.q1 |
21675d1 |
21675.q |
21675d |
$2$ |
$2$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{4} \cdot 5^{6} \cdot 17^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.84 |
2B |
$4080$ |
$192$ |
$5$ |
$5.129408448$ |
$1$ |
|
$3$ |
$235008$ |
$2.001591$ |
$274625/81$ |
$0.94244$ |
$4.77555$ |
$[1, 1, 0, -166325, 18213000]$ |
\(y^2+xy=x^3+x^2-166325x+18213000\) |
2.3.0.a.1, 4.12.0.f.1, 8.24.0.bh.1, 34.6.0.a.1, 48.48.1.gv.1, $\ldots$ |
$[(-136, 6260)]$ |
21675.q2 |
21675d2 |
21675.q |
21675d |
$2$ |
$2$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 3^{8} \cdot 5^{6} \cdot 17^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.127 |
2B |
$4080$ |
$192$ |
$5$ |
$10.25881689$ |
$1$ |
|
$0$ |
$470016$ |
$2.348164$ |
$5359375/6561$ |
$1.11521$ |
$5.08409$ |
$[1, 1, 0, 447800, 122000125]$ |
\(y^2+xy=x^3+x^2+447800x+122000125\) |
2.3.0.a.1, 4.6.0.e.1, 8.24.0.bj.1, 48.48.1.gx.1, 68.12.0.l.1, $\ldots$ |
$[(88009/16, 72191635/16)]$ |
21675.r1 |
21675m1 |
21675.r |
21675m |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{9} \cdot 5^{8} \cdot 17^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$2.842496869$ |
$1$ |
|
$2$ |
$68040$ |
$1.531595$ |
$35242105/19683$ |
$1.04604$ |
$4.16531$ |
$[1, 1, 0, -21825, 222750]$ |
\(y^2+xy=x^3+x^2-21825x+222750\) |
12.2.0.a.1 |
$[(10, 70)]$ |
21675.s1 |
21675c8 |
21675.s |
21675c |
$8$ |
$16$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{4} \cdot 5^{7} \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.121 |
2B |
$8160$ |
$768$ |
$13$ |
$36.36573288$ |
$1$ |
|
$0$ |
$491520$ |
$2.512196$ |
$1114544804970241/405$ |
$1.07354$ |
$6.14019$ |
$[1, 1, 0, -15606150, -23736178125]$ |
\(y^2+xy=x^3+x^2-15606150x-23736178125\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 10.6.0.a.1, 16.48.0.x.2, $\ldots$ |
$[(368050235868089125/8380596, 113831594231720597919561125/8380596)]$ |
21675.s2 |
21675c6 |
21675.s |
21675c |
$8$ |
$16$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{8} \cdot 5^{8} \cdot 17^{6} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.123 |
2Cs |
$4080$ |
$768$ |
$13$ |
$18.18286644$ |
$1$ |
|
$2$ |
$245760$ |
$2.165623$ |
$272223782641/164025$ |
$1.03897$ |
$5.30712$ |
$[1, 1, 0, -975525, -371070000]$ |
\(y^2+xy=x^3+x^2-975525x-371070000\) |
2.6.0.a.1, 4.12.0.b.1, 8.48.0.k.1, 20.24.0.c.1, 40.96.1.cc.2, $\ldots$ |
$[(-2113517001/1930, -968004770853/1930)]$ |
21675.s3 |
21675c7 |
21675.s |
21675c |
$8$ |
$16$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 3^{16} \cdot 5^{7} \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.134 |
2B |
$8160$ |
$768$ |
$13$ |
$36.36573288$ |
$1$ |
|
$0$ |
$491520$ |
$2.512196$ |
$-147281603041/215233605$ |
$1.05949$ |
$5.37179$ |
$[1, 1, 0, -794900, -512499375]$ |
\(y^2+xy=x^3+x^2-794900x-512499375\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.ba.2, 16.48.0.u.2, 20.12.0.h.1, $\ldots$ |
$[(409264570028551525/14142156, 223997178235413405925164425/14142156)]$ |
21675.s4 |
21675c4 |
21675.s |
21675c |
$8$ |
$16$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3 \cdot 5^{7} \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
32.48.0.1 |
2B |
$8160$ |
$768$ |
$13$ |
$2.272858305$ |
$1$ |
|
$2$ |
$122880$ |
$1.819048$ |
$56667352321/15$ |
$1.03019$ |
$5.14992$ |
$[1, 1, 0, -578150, 168962625]$ |
\(y^2+xy=x^3+x^2-578150x+168962625\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 24.24.0.by.2, $\ldots$ |
$[(1480, 49835)]$ |
21675.s5 |
21675c3 |
21675.s |
21675c |
$8$ |
$16$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{4} \cdot 5^{10} \cdot 17^{6} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.44 |
2Cs |
$4080$ |
$768$ |
$13$ |
$9.091433220$ |
$1$ |
|
$2$ |
$122880$ |
$1.819048$ |
$111284641/50625$ |
$1.02534$ |
$4.52563$ |
$[1, 1, 0, -72400, -3498125]$ |
\(y^2+xy=x^3+x^2-72400x-3498125\) |
2.6.0.a.1, 4.24.0.b.1, 8.48.0.b.2, 24.96.1.n.1, 40.96.1.s.1, $\ldots$ |
$[(-8249/10, 1427371/10)]$ |
21675.s6 |
21675c2 |
21675.s |
21675c |
$8$ |
$16$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{2} \cdot 5^{8} \cdot 17^{6} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.3 |
2Cs |
$4080$ |
$768$ |
$13$ |
$4.545716610$ |
$1$ |
|
$2$ |
$61440$ |
$1.472475$ |
$13997521/225$ |
$0.96230$ |
$4.31798$ |
$[1, 1, 0, -36275, 2607000]$ |
\(y^2+xy=x^3+x^2-36275x+2607000\) |
2.6.0.a.1, 4.12.0.b.1, 8.24.0.i.1, 16.48.0.d.2, 24.48.0.bb.2, $\ldots$ |
$[(-145/2, 15895/2)]$ |
21675.s7 |
21675c1 |
21675.s |
21675c |
$8$ |
$16$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 3 \cdot 5^{7} \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
32.48.0.1 |
2B |
$8160$ |
$768$ |
$13$ |
$2.272858305$ |
$1$ |
|
$1$ |
$30720$ |
$1.125900$ |
$-1/15$ |
$1.19808$ |
$3.68780$ |
$[1, 1, 0, -150, 114375]$ |
\(y^2+xy=x^3+x^2-150x+114375\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 24.24.0.bz.1, $\ldots$ |
$[(910/3, 27535/3)]$ |
21675.s8 |
21675c5 |
21675.s |
21675c |
$8$ |
$16$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 3^{2} \cdot 5^{14} \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.197 |
2B |
$8160$ |
$768$ |
$13$ |
$4.545716610$ |
$1$ |
|
$2$ |
$245760$ |
$2.165623$ |
$4733169839/3515625$ |
$1.05585$ |
$4.90126$ |
$[1, 1, 0, 252725, -25931750]$ |
\(y^2+xy=x^3+x^2+252725x-25931750\) |
2.3.0.a.1, 4.12.0.d.1, 8.48.0.n.2, 24.96.1.cv.2, 80.96.1.?, $\ldots$ |
$[(7770, 682490)]$ |
21675.t1 |
21675k2 |
21675.t |
21675k |
$2$ |
$2$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{10} \cdot 5^{9} \cdot 17^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1020$ |
$12$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$921600$ |
$2.579166$ |
$69375867029/1003833$ |
$0.95207$ |
$5.65380$ |
$[1, 1, 0, -3092450, -2068114125]$ |
\(y^2+xy=x^3+x^2-3092450x-2068114125\) |
2.3.0.a.1, 60.6.0.c.1, 170.6.0.?, 204.6.0.?, 1020.12.0.? |
$[ ]$ |
21675.t2 |
21675k1 |
21675.t |
21675k |
$2$ |
$2$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 3^{5} \cdot 5^{9} \cdot 17^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1020$ |
$12$ |
$0$ |
$1$ |
$9$ |
$3$ |
$1$ |
$460800$ |
$2.232590$ |
$-24389/70227$ |
$1.02818$ |
$5.01793$ |
$[1, 1, 0, -21825, -87561000]$ |
\(y^2+xy=x^3+x^2-21825x-87561000\) |
2.3.0.a.1, 30.6.0.a.1, 204.6.0.?, 340.6.0.?, 1020.12.0.? |
$[ ]$ |
21675.u1 |
21675w1 |
21675.u |
21675w |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{9} \cdot 5^{8} \cdot 17^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$8.643711099$ |
$1$ |
|
$0$ |
$1156680$ |
$2.948200$ |
$35242105/19683$ |
$1.04604$ |
$5.86798$ |
$[1, 0, 1, -6307576, 1138523423]$ |
\(y^2+xy+y=x^3-6307576x+1138523423\) |
12.2.0.a.1 |
$[(-1319/5, 4797706/5)]$ |
21675.v1 |
21675q1 |
21675.v |
21675q |
$2$ |
$2$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{4} \cdot 5^{6} \cdot 17^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.84 |
2B |
$4080$ |
$192$ |
$5$ |
$1$ |
$1$ |
|
$1$ |
$13824$ |
$0.584983$ |
$274625/81$ |
$0.94244$ |
$3.07289$ |
$[1, 0, 1, -576, 3673]$ |
\(y^2+xy+y=x^3-576x+3673\) |
2.3.0.a.1, 4.12.0.f.1, 8.24.0.bh.1, 34.6.0.a.1, 48.48.1.gv.1, $\ldots$ |
$[ ]$ |
21675.v2 |
21675q2 |
21675.v |
21675q |
$2$ |
$2$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 3^{8} \cdot 5^{6} \cdot 17^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.127 |
2B |
$4080$ |
$192$ |
$5$ |
$1$ |
$1$ |
|
$0$ |
$27648$ |
$0.931556$ |
$5359375/6561$ |
$1.11521$ |
$3.38143$ |
$[1, 0, 1, 1549, 24923]$ |
\(y^2+xy+y=x^3+1549x+24923\) |
2.3.0.a.1, 4.6.0.e.1, 8.24.0.bj.1, 48.48.1.gx.1, 68.12.0.l.1, $\ldots$ |
$[ ]$ |
21675.w1 |
21675n1 |
21675.w |
21675n |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{2} \cdot 5^{9} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$2.916904231$ |
$1$ |
|
$0$ |
$342720$ |
$2.007591$ |
$69632/9$ |
$0.79461$ |
$4.83794$ |
$[0, -1, 1, -204708, -31348807]$ |
\(y^2+y=x^3-x^2-204708x-31348807\) |
10.2.0.a.1 |
$[(-1251/2, 11267/2)]$ |
21675.x1 |
21675f1 |
21675.x |
21675f |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 3^{3} \cdot 5^{2} \cdot 17^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$26.41744306$ |
$1$ |
|
$0$ |
$165888$ |
$1.612633$ |
$-5624320000/2255067$ |
$1.03348$ |
$4.32645$ |
$[0, -1, 1, -31308, -2763817]$ |
\(y^2+y=x^3-x^2-31308x-2763817\) |
6.2.0.a.1 |
$[(4447870511309/74998, 9109452556442571045/74998)]$ |
21675.y1 |
21675g1 |
21675.y |
21675g |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{6} \cdot 5^{13} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$2.820645938$ |
$1$ |
|
$0$ |
$145152$ |
$1.455002$ |
$100471803904/56953125$ |
$1.08007$ |
$4.07217$ |
$[0, -1, 1, -16008, -106207]$ |
\(y^2+y=x^3-x^2-16008x-106207\) |
10.2.0.a.1 |
$[(7053/2, 590621/2)]$ |
21675.z1 |
21675u1 |
21675.z |
21675u |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{6} \cdot 5^{13} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$2.753093758$ |
$1$ |
|
$0$ |
$2467584$ |
$2.871609$ |
$100471803904/56953125$ |
$1.08007$ |
$5.77484$ |
$[0, 1, 1, -4626408, -549552031]$ |
\(y^2+y=x^3+x^2-4626408x-549552031\) |
10.2.0.a.1 |
$[(-483/2, 21671/2)]$ |
21675.ba1 |
21675y1 |
21675.ba |
21675y |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 3^{2} \cdot 5^{9} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$3.347218718$ |
$1$ |
|
$0$ |
$20160$ |
$0.590983$ |
$69632/9$ |
$0.79461$ |
$3.13528$ |
$[0, 1, 1, -708, -6631]$ |
\(y^2+y=x^3+x^2-708x-6631\) |
10.2.0.a.1 |
$[(-247/4, 1843/4)]$ |
21675.bb1 |
21675z1 |
21675.bb |
21675z |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 3 \cdot 5^{4} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$510$ |
$48$ |
$1$ |
$6.433596029$ |
$1$ |
|
$0$ |
$30720$ |
$0.823508$ |
$-102400/3$ |
$1.04391$ |
$3.50795$ |
$[0, 1, 1, -2408, -47431]$ |
\(y^2+y=x^3+x^2-2408x-47431\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 85.24.0.?, 510.48.1.? |
$[(25293/14, 3687713/14)]$ |
21675.bb2 |
21675z2 |
21675.bb |
21675z |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 3^{5} \cdot 5^{8} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$510$ |
$48$ |
$1$ |
$1.286719205$ |
$1$ |
|
$0$ |
$153600$ |
$1.628227$ |
$20480/243$ |
$1.13104$ |
$4.28415$ |
$[0, 1, 1, 12042, 2250119]$ |
\(y^2+y=x^3+x^2+12042x+2250119\) |
5.12.0.a.1, 6.2.0.a.1, 30.24.1.d.1, 85.24.0.?, 510.48.1.? |
$[(1557/2, 65021/2)]$ |